Samples of Ba1−xSrxCe0.9Y0.1O3−δ, 0 < x < 0.1, with Improved Chemical Stability in CO2-H2 Gas-Involving Atmospheres as Potential Electrolytes for a Proton Ceramic Fuel Cell
Abstract
:1. Introduction
2. Experimental
2.1. The Preparation of Powder and Sintered Samples of Ba1−xSrxCe0.9Y0.1O3−δ, 0 < x < 0.1
2.2. Analytical Methods Used to Evaluate the Physicochemical Properties of the Series of SBCY Samples
2.3. Electrical and Electrochemical Investigations of Ba1−xSrxCe0.9Y0.1O3−δ Samples
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dwivedi, S. Solid oxide fuel cell: Materials for anode, cathode and electrolyte. Int. J. Hydrog. Energy 2019. [Google Scholar] [CrossRef]
- Hossain, S.; Abdalla, A.M.; Jamain, S.N.B.; Zaini, J.H.; Azad, A.K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 2017, 79, 750–764. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, Y.; Changsong, C.; Wang, S.; Xie, B.; Peng, R.; Chen, C.; Zhan, Z. Preparation and characterization of symmetrical protonic ceramic fuel cells as electrochemical hydrogen pumps. J. Power Sources 2020, 457, 228036. [Google Scholar] [CrossRef]
- Wu, G.; Xie, K.; Wu, Y.; Yao, W.; Zhou, Y. Electrochemical conversion of H2O/CO2 to fuel in a proton-conducting solid oxide electrolyser. J. Power Sources 2013, 232, 187–192. [Google Scholar] [CrossRef]
- Bausá, N.; Escolástico, S.; Serra, J.M. Direct CO2 conversion to syngas in a BaCe0.2Zr0.7Y0.1O3−δ-based proton-conducting electrolysis cell. J. CO2 Util. 2019, 34, 231–238. [Google Scholar] [CrossRef]
- Melnik, J.; Luo, J.J.; Chuang, K.T.; Sanger, A.R. Stability and electric conductivity of barium cerate perovskites co-doped with praseodymium. Open Fuels Energy Sci. J. 2008, 1, 7–10. [Google Scholar] [CrossRef]
- Marrony, M. Proton-Conducting Ceramics: From Fundamentals to Applied Research, 2nd ed.; Marrony, M., Ed.; Pan Stanford Publishing Pte. Ltd.: Singapore, 2016. [Google Scholar]
- Bi, L.; Traversa, E. Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. J. Mater. Res. 2014, 29, 1–15. [Google Scholar] [CrossRef]
- Zakowsky, N.; Williamson, S.; Irvine, J.T.S. Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3−δ electrolytes for fuel cells and other applications. Solid State Ionics 2005, 176, 3019–3026. [Google Scholar] [CrossRef]
- Ma, X.; Dai, J.; Zhang, H.; Reisner, D.E. Protonic conductivity nanostructured ceramic film with improved resistance to carbon dioxide at elevated temperatures. Surf. Coat. Technol. 2005, 200, 1252–1258. [Google Scholar] [CrossRef]
- Dai, H.; Kou, H.; Wang, H.; Bi, L. Electrochemical performance of protonic ceramic fuel cells with stable BaZrO3-based electrolyte: A mini-review. Electrochem. Commun. 2018, 96, 11–15. [Google Scholar] [CrossRef]
- Rashid, N.L.R.M.; Samat, A.A.; Jais, A.A.; Somalu, M.R.; Muchtar, A.; Baharuddin, N.A.; Isahak, W.N.R.W. Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell. Ceram. Int. 2019, 45, 6605–6615. [Google Scholar] [CrossRef]
- An, H.; Lee, H.W.; Kim, B.K.; Son, J.W.; Yoon, K.J.; Kim, H.; Shin, D.; Ji, H.I.; Lee, J.H. A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600 °C. Nat. Energy 2018, 3, 870–875. [Google Scholar] [CrossRef]
- Iwahara, H.; Yajima, T.; Hibino, T.; Ushida, H. Performance of Solid Oxide Fuel Cell Using Proton and Oxide Ion Mixed Conductors Based on BaCe1−xSmxO3−α. J. Electrochem. Soc. 1993, 140, 1687–1691. [Google Scholar] [CrossRef]
- Bonanos, N.; Knight, K.S.; Ellis, B. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications. Solid State Ionics 1995, 79, 161–170. [Google Scholar] [CrossRef]
- Qian, J.; Sun, W.; Shi, Z.; Tao, Z.; Liu, W. Chemically stable BaZr0.7Pr0.1Y0.2O3−δ-BaCe0.8Y0.2O3−δ bilayer electrolyte for intermediate temperature solid oxide fuel cells. Electrochim. Acta 2015, 151, 497–501. [Google Scholar] [CrossRef]
- Besancon, B.M.; Hasanov, V.; Imbault-Lastapis, R.; Benesch, R.; Barrio, M.; Mølnvik, M.J. Hydrogen quality from decarbonized fossil fuels to fuel cells. Int. J. Hydrog. Energy 2009, 34, 2350–2360. [Google Scholar] [CrossRef]
- Kosmambetova, G.; Moroz, E.; Guralsky, A.; Pakharukova, V.; Boronin, A.; Ivashchenko, T.; Gritsenko, V.; Strizhak, P. Low temperature hydrogen purification from CO for fuel cell application over copper–ceria catalysts supported on different oxides. Int. J. Hydrog. Energy 2011, 36, 1271–1275. [Google Scholar] [CrossRef]
- Soares, J.F.; Confortin, T.C.; Todero, I.; Mayer, F.D.; Mazutti, M.A. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renew. Sustain. Energy Rev. 2020, 117, 109484. [Google Scholar] [CrossRef]
- Materazzi, M.; Taylor, R.; Cairns-Terry, M. Production of biohydrogen from gasification of waste fuels: Pilot plant results and deployment prospects. Waste Manag. 2019, 94, 95–106. [Google Scholar] [CrossRef]
- Lacz, A. Reactivity of solid BaCe0.9Y0.1O3 towards liquid V2O5. Ceram. Int. 2019, 45, 7077–7084. [Google Scholar]
- Lacz, A.; Okas, P.; Lach, R. Reactivity of solid BaCe0.9Y0.1O3−δ towards melted WO3. J. Alloy. Compd. 2019, 797, 131–139. [Google Scholar] [CrossRef]
- Lu, J.; Wang, L.; Fan, L.; Li, Y.; Dai, L.; Guo, H. Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres. J. Rare Earths 2008, 26, 505–510. [Google Scholar] [CrossRef]
- Radojković, A.; Žunić, M.; Slavica, M.; Perać, S.S.; Golić, G.L.; Branković, Z.; Branković, G. Co-doping as a strategy for tailoring the electrolyte properties of BaCe0.9Y0.1O3−δ. Ceram. Int. 2019, 45, 8279–8285. [Google Scholar] [CrossRef]
- Shin, E.K.; Anggia, E.; Park, J.S. Effects of Al2O3 doping in BaCeO3 on chemical stability and electrical conductivity of proton conducting oxides. Solid State Ionics 2019, 39, 115007. [Google Scholar] [CrossRef]
- Mumtaz, S.M.; Ahmad, A.; Raza, R.; Arshad, M.S.; Ahmed, B.; Ashiq, M.A.; Abbas, G. Nano grained Sr and Zr co-doped BaCeO3 electrolytes for intermediate temperature solid oxide fuel cells. Ceram. Int. 2017, 43, 14354–14360. [Google Scholar] [CrossRef]
- Dudek, M.; Lis, B.; Lach, R.; Daugėla, S.; Šalkus, T.; Kežionis, A.; Mosiałek, M.; Socha, R.; Morgiel, J.; Gajek, M.; et al. Ba0.95Ca0.05Ce0.9Y0.1O3 as an electrolyte for proton-conducting ceramic fuel cells. Electrochim. Acta 2019, 304, 70–79. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, F.; Zhang, L.; Brinkman, K.; Chen, F. Stability and electrical property of Ba1−xSrxCe0.8Y0.2O3−δ high temperature proton conductor. J. Alloy. Compd. 2010, 506, 263–267. [Google Scholar] [CrossRef]
- Hung, I.M.; Peng, H.W.; Zheng, S.L.; Lin, C.P.; Wu, J.S. Phase stability and conductivity of Ba1−ySryCe1−xYxO3−δ solid oxide fuel cell electrolyte. J. Power Sources 2009, 193, 155–159. [Google Scholar] [CrossRef]
- Dudek, M.; Lis, B.; Kocyło, E.; Rapacz-Kmita, A.; Mosiałek, M.; Gajek, M.; Lach, R.; Presto, S.; Viviani, M.; Carpanese, M.P.; et al. Utilisation of methylcellulose as a shaping agent in the fabrication of Ba0.95Ca0.05Ce0.9Y0.1O3 proton-conducting ceramic membranes via the gelcasting method. J. Therm. Anal. Calorim. 2019, 138, 2077–2090. [Google Scholar] [CrossRef] [Green Version]
- Lufaso, M.W.; Woodward, P.M. Prediction of the crystal structures of perovskites using the software program ıt SPuDS. Acta Crystallogr. Sect. B Struct. Sci. 2001, 57, 725–738. [Google Scholar] [CrossRef] [Green Version]
- Bućko, M.M.; Dudek, M. Structural and electrical properties of (Ba1−xSrx)(Zr0.9M0.1)O3, M=Y, La, solid solutions. J. Power Sources 2009, 194, 25–30. [Google Scholar] [CrossRef]
- Dudek, M.; Lis, B.; Rapacz-Kmita, A.; Gajek, M.; Raźniak, A.; Drożdż, E. Some observations on the synthesis and electrolytic properties of (Ba1−xCax)(M0.9Y0.1)O3, M= Ce, Zr-based samples modified with calcium. Mater. Sci. 2016, 34, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Kežionis, A.; Kazakevičius, E.; Šalkus, T.; Orliukas, A.F. Broadband high frequency impedance spectrometer with working temperatures up to 1200K. Solid State Ionics 2011, 188, 110–113. [Google Scholar] [CrossRef]
- Kezionis, A.; Kazlauskas, S.; Petrulionis, D.; Orliukas, A.F. Broadband Method for the Determination of Small Sample’s Electrical and Dielectric Properties at High Temperatures. IEEE Trans. Microw. Theory Tech. 2014, 62, 2456–2461. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Xiao, G.; Zhang, F.; Yu, T.; Xiao, J.; Ma, G. Ionic conduction in Sn1−xScxP2O7 for intermediate temperature fuel cells. J. Power Sources 2011, 196, 683–687. [Google Scholar] [CrossRef]
- Hayashi, H.; Inaba, H.; Matsuyama, M.; Lan, N.G.; Dokiya, M.; Tagawa, H. Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 1999, 122, 1–15. [Google Scholar] [CrossRef]
- Gupta, H.C.; Simon, P.; Pagnier, T.; Lucazeau, G. Force constant calculation from Raman and IR spectra in the three non-cubic phases of BaCeO3. J. Raman Spectrosc. 2001, 32, 331–337. [Google Scholar] [CrossRef]
- Scherban, T.; Villeneuve, R.; Abello, L.; Lucazeau, G. Raman scattering study of BaCeO3 and SrCeO3. Solid State Commun. 1992, 84, 341–344. [Google Scholar] [CrossRef]
- Loridant, S.; Abello, L.; Lucazeau, G. Polarized Raman Spectra of Single Crystals of BaCeO3. J. Raman Spectrosc. 1997, 28, 283–288. [Google Scholar] [CrossRef]
- Sawant, P.; Shirsat, A.; Varma, S.; Wani, B.; Bharadwaj, S. Chemical stability and proton conductivity of BaCe0.8Y0.2O3−δ. BARC Newsl –Founder’s Day Special Issue 2011, 360–363. [Google Scholar]
- Pasierb, P.; Gajerski, R.; Rokita, M.; Rekas, M. Studies on the binary system Li2CO3–BaCO3. Physica B 2001, 304, 463–476. [Google Scholar] [CrossRef]
- Fujishiro, F.; Kojima, Y.; Hashimoto, T. Kinetics and Mechanism of Chemical Reaction of CO2 and Ba2Fe2O5 under various CO2 partial pressures. J. Am. Ceram. Soc. 2012, 95, 3634–3637. [Google Scholar] [CrossRef]
- Coors, W.G.; Readey, D.W. Proton conductivity measurements in yttrium barium cerate by impedance spectroscopy. J. Am. Ceram. Soc. 2002, 85, 2637–2640. [Google Scholar] [CrossRef]
- Xu, J.-H.; Xiang, J.; Ding, H.; Yu, T.-Q.; Li, J.-L.; Li, Z.-G.; Yang, Y.-W.; Shao, X.-L. Synthesis and electrical properties of BaCeO3-based proton conductors by calcinations of metal-polyvinyl alcohol gel. J. Alloy. Compd. 2013, 551, 333–337. [Google Scholar] [CrossRef]
- Melnik, J.; Sanger, A.R.; Tsyganok, A.; Luo, J.L.; Chuang, K.T. Distinguishing between apparent and authentic conductivity of protonic ceramic electrolytes using differential resistance analysis applied to conductivity measurements. J. Power Sources 2008, 185, 1101–1106. [Google Scholar] [CrossRef]
- Lim, D.K.; Park, J.C.; Choi, M.B.; Park, C.N.; Song, J.S. Partial conductivities of mixed conducting BaCe0.65Zr0.2Y0.15O3−δ. Int. J. Hydrog. Energy 2010, 39, 10624–10629. [Google Scholar] [CrossRef]
- Oishi, M.; Akoshima, S.; Yashiro, K.; Sato, K.; Mizusaki, J.; Kawada, T. Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCeO3: Part 2: The electrical conductivity and diffusion coefficient of BaCe0.9Y0.1O3−δ. Solid State Ionics 2008, 179, 2240–2247. [Google Scholar] [CrossRef]
- Medvedev, D.A.; Gorbova, E.V.; Demin, A.K.; Tsiakaras, P. Conductivity of Gd-doped BaCeO3 protonic conductor in Н2–Н2О–О2 atmospheres. Int. J. Hydrog. Energy 2014, 39, 21547–21552. [Google Scholar] [CrossRef]
- Sun, Z.; Fabbri, E.; Bi, L.; Traversa, E. Lowering grain boundary resistance of BaZr0.8Y0.2O3−δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Phys. Chem. Chem. Phys. 2011, 13, 7692–7700. [Google Scholar] [CrossRef]
- Tong, J.; Clark, D.; Hoban, M.; O’Hayre, R. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics 2010, 181, 496–503. [Google Scholar] [CrossRef]
- Lindman, A.; Helgee, E.E.; Wahnström, G. Comparison of Space-Charge Formation at Grain Boundaries in Proton-Conducting BaZrO3 and BaCeO3. Chem. Mater. 2017, 29, 7931–7941. [Google Scholar] [CrossRef]
- Ye, F.; Mori, T.; Ou, D.R.; Takahashi, M.; Zou, J.; Drennan, J. Ionic Conductivities and Microstructures of Ytterbium-Doped Ceria. J. Electrochem. Soc. 2007, 154, B180–B185. [Google Scholar] [CrossRef]
- Preethi, S.; Suresh, K.B. Divalent cations modified grain boundary scavenging in samarium doped ceria electrolyte for solid oxide fuel cells. J. Alloy. Compd. 2019, 279, 1068–1078. [Google Scholar] [CrossRef]
- Dudek, M. Ceramic Electrolytes in the CeO2-Gd2O3-SrO System—Preparation, Properties and Application for Solid Oxide Fuel Cells. Int. J. Electrochem. Sci. 2012, 7, 2874–2889. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudek, M.; Lis, B.; Lach, R.; Daugėla, S.; Šalkus, T.; Kežionis, A.; Mosiałek, M.; Sitarz, M.; Rapacz-Kmita, A.; Grzywacz, P. Samples of Ba1−xSrxCe0.9Y0.1O3−δ, 0 < x < 0.1, with Improved Chemical Stability in CO2-H2 Gas-Involving Atmospheres as Potential Electrolytes for a Proton Ceramic Fuel Cell. Materials 2020, 13, 1874. https://doi.org/10.3390/ma13081874
Dudek M, Lis B, Lach R, Daugėla S, Šalkus T, Kežionis A, Mosiałek M, Sitarz M, Rapacz-Kmita A, Grzywacz P. Samples of Ba1−xSrxCe0.9Y0.1O3−δ, 0 < x < 0.1, with Improved Chemical Stability in CO2-H2 Gas-Involving Atmospheres as Potential Electrolytes for a Proton Ceramic Fuel Cell. Materials. 2020; 13(8):1874. https://doi.org/10.3390/ma13081874
Chicago/Turabian StyleDudek, Magdalena, Bartłomiej Lis, Radosław Lach, Salius Daugėla, Tomas Šalkus, Algimantas Kežionis, Michał Mosiałek, Maciej Sitarz, Alicja Rapacz-Kmita, and Przemysław Grzywacz. 2020. "Samples of Ba1−xSrxCe0.9Y0.1O3−δ, 0 < x < 0.1, with Improved Chemical Stability in CO2-H2 Gas-Involving Atmospheres as Potential Electrolytes for a Proton Ceramic Fuel Cell" Materials 13, no. 8: 1874. https://doi.org/10.3390/ma13081874
APA StyleDudek, M., Lis, B., Lach, R., Daugėla, S., Šalkus, T., Kežionis, A., Mosiałek, M., Sitarz, M., Rapacz-Kmita, A., & Grzywacz, P. (2020). Samples of Ba1−xSrxCe0.9Y0.1O3−δ, 0 < x < 0.1, with Improved Chemical Stability in CO2-H2 Gas-Involving Atmospheres as Potential Electrolytes for a Proton Ceramic Fuel Cell. Materials, 13(8), 1874. https://doi.org/10.3390/ma13081874