The Leakage Mechanism of the Package of the AlGaN/GaN Liquid Sensor
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Device Fabrication
2.2. Device Package
2.3. Package Reliability Test
3. Results
4. Discussion
4.1. SiO2/Si3N4 Package
4.2. PI Package
4.3. SiO2/Si3N4/PI Package
4.4. Package Failure Mechanism
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.J.; Haberlen, O.; Lidow, A.; Tsai, C.L.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Steinhoff, G.; Schaff, W.J.; Eastman, L.F.; Stutzmann, M.; Hermann, M.; Eickhoff, M. pH response of GaN surfaces and its application for pH-sensitive field-effect transistors. Appl. Phys. Lett. 2003, 83, 177. [Google Scholar] [CrossRef]
- Kokawa, T.; Sato, T.; Hasegawa, H.; Hashizume, T. Liquid-phase sensors using open-gate AlGaN/GaN high electron mobility transistor structure. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2006, 24, 1972. [Google Scholar] [CrossRef] [Green Version]
- Alifragis, Y.; Volosirakis, A.; Chaniotakis, N.; Konstantinidis, G.; Adikimenakis, A.; Georgakilas, A. Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures. Biosens. Bioelectron. 2007, 22, 2796–2801. [Google Scholar] [CrossRef]
- Chen, K.H.; Wang, H.; Kang, B.S.; Chang, C.; Wang, Y.; Lele, T.; Ren, F.; Pearton, S.J.; Dabiran, A.; Osinsky, A.; et al. Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors. Sens. Actuators B Chem. 2008, 134, 386–389. [Google Scholar] [CrossRef]
- Asadnia, M.; Myers, M.B.; Umana-Membreno, G.A.; Sanders, T.M.; Mishra, U.K.; Nener, B.; Baker, M.V.; Parish, G. Ca2+ detection utilising AlGaN/GaN transistors with ion-selective polymer membranes. Anal. Chim. Acta 2017, 987, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-S.; Jeong, Y.-T.; Park, H.-J.; Shin, J.-K.; Choi, P.; Lee, J.-H.; Lim, G. An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens. Bioelectron. 2004, 20, 69–74. [Google Scholar] [CrossRef]
- Schwarz, S.U.; Linkohr, S.; Lorenz, P.; Krischok, S.; Nakamura, T.; Cimalla, V.; E Nebel, C.; Ambacher, O. DNA-sensor based on AlGaN/GaN high electron mobility transistor. Phys. Status Solidi A 2011, 208, 1626–1629. [Google Scholar] [CrossRef]
- Espinosa, N.; Schwarz, S.U.; Cimalla, V.; Ambacher, O. Detection of different target-DNA concentrations with highly sensitive AlGaN/GaN high electron mobility transistors. Sens. Actuators B Chem. 2015, 210, 633–639. [Google Scholar] [CrossRef]
- Kang, B.S.; Ren, F.; Wang, L.; Lofton, C.; Tan, W.; Pearton, S.J.; Dabiran, A.; Osinsky, A.; Chow, P.P. Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility Transistors. Appl. Phys. Lett. 2005, 87, 023508. [Google Scholar] [CrossRef]
- Wen, X.; Gupta, S.; Wang, Y.; Nicholson, T.R.; Lee, S.C.; Lu, W. High sensitivity AlGaN/GaN field effect transistor protein sensors operated in the subthreshold regime by a control gate electrode. Appl. Phys. Lett. 2011, 99, 43701. [Google Scholar] [CrossRef]
- Chu, B.H.; Kang, B.S.; Hung, S.C.; Chen, K.H.; Ren, F.; Sciullo, A.; Gila, B.P.; Pearton, S.J. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate. J. Diabetes Sci. Technol. 2010, 4, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Bergveld, P. Thirty years of ISFETOLOGY. Sens. Actuators B Chem. 2003, 88, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Abe, H.; Esashi, M.; Matsuo, T. ISFET’s using inorganic gate thin films. IEEE Trans. Electron Devices 1979, 26, 1939–1944. [Google Scholar] [CrossRef]
- Zhang, H.; Tu, J.; Yang, S.; Sheng, K.; Wang, P. Optimization of gate geometry towards high-sensitivity AlGaN/GaN pH sensor. Talanta 2019, 205, 120134. [Google Scholar] [CrossRef] [PubMed]
- Moser, N.; Lande, T.S.; Toumazou, C.; Georgiou, P. ISFETs in CMOS and Emergent Trends in Instrumentation: A Review. IEEE Sens. J. 2016, 16, 6496–6514. [Google Scholar] [CrossRef]
- Van Der Spiegel, J.; Lauks, I.; Chan, P.; Babic, D. The extended gate chemically sensitive field effect transistor as multi-species microprobe. Sens. Actuators 1983, 4, 291–298. [Google Scholar] [CrossRef]
- Pullano, S.A.; Critello, C.D.; Mahbub, I.; Tasneem, N.T.; Shamsir, S.; Islam, S.K.; Greco, M.; Fiorillo, A.S. EGFET-Based Sensors for Bioanalytical Applications: A Review. Sensors 2018, 18, 4042. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.; Lee, B.-H.; Kim, S.-Y.; Park, J.-Y.; Bae, H.; Choi, Y.-K.; Ahn, J.-H. Nanoscale FET-Based Transduction toward Sensitive Extended-Gate Biosensors. ACS Sens. 2019, 4, 1724–1729. [Google Scholar] [CrossRef]
- Ho, N.; Kratochvíl, J.; Blackburn, G.; Janata, J. Encapsulation of polymeric membrane-based ion-selective field effect transistors. Sens. Actuators 1983, 4, 413–421. [Google Scholar] [CrossRef]
- Grisel, A.; Francis, C.; Verney, E.; Mondin, G. Packaging technologies for integrated electrochemical sensors. Sens. Actuators 1989, 17, 285–295. [Google Scholar] [CrossRef]
- Chovelon, J.; Jaffrezic-Renault, N.; Cros, Y.; Fombon, J.; Pedone, D. Monitoring of ISFET encapsulation aging by impedance measurements. Sens. Actuators B Chem. 1991, 3, 43–50. [Google Scholar] [CrossRef]
- Munoz, J.; Bratov, A.; Mas, R.; Abramova, N.; Dominguez, C.; Bartoli, J. Packaging of ISFETs at the Wafer Level by Photopatternable Encapsulant Resins. In Proceedings of the International Solid-State Sensors and Actuators Conference—TRANSDUCERS ’95, Boston, MA, USA, 9–13 October 2005; Volume 1, pp. 248–251. [Google Scholar]
- Van Hal, R.; Bergveld, P.; Engbersen, J.; Reinhoudt, D. Characterization and testing of polymer-oxide adhesion to improve the packaging reliability of ISFETs. Sens. Actuators B Chem. 1995, 23, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, J.; Bratov, A.; Mas, R.; Abramova, N.; Dominguez, C.; Bartrolí, J. Planar Compatible Polymer Technology for Packaging of Chemical Microsensors. J. Electrochem. Soc. 1996, 143, 2020–2025. [Google Scholar] [CrossRef]
- Hammond, P. Encapsulation of a liquid-sensing microchip using SU-8 photoresist. Microelectron. Eng. 2004, 73, 893–897. [Google Scholar] [CrossRef]
- Sudakov-Boreysha, L.; Morgenshtein, A.; Dinnar, U.; Nemirovsky, Y. ISFET CMOS compatible design and encapsulation challenges. In Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and Systems, Tel Aviv, Israel, 13–15 December 2005; pp. 535–538. [Google Scholar]
- Oelßner, W.; Zosel, J.; Güth, U.; Pechstein, T.; Babel, W.; Connery, J.; DeMuth, C.; Gansey, M.G.; Verburg, J. Encapsulation of ISFET sensor chips. Sens. Actuators B Chem. 2005, 105, 104–117. [Google Scholar] [CrossRef]
- Khanna, V. Fabrication of ISFET Microsensor by Diffusion-Based Al Gate NMOS Process and Determination of Its pH Sensitivity from Transfer Characteristics; NISCAIR-CSIR: New Delhi, India, 2012; pp. 199–207. [Google Scholar]
- Güth, U.; Oelßner, W.; Vonau, W. Investigation of corrosion phenomena on chemical microsensors. Electrochim. Acta 2001, 47, 201–210. [Google Scholar] [CrossRef]
- Ghosh, M. Polyimides: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Fukukawa, K.-I.; Ueda, M. Recent Progress of Photosensitive Polyimides. Polym. J. 2008, 40, 281–296. [Google Scholar] [CrossRef]
- Sun, Y.; Lacour, S.P.; Brooks, R.A.; Rushton, N.; Fawcett, J.; Cameron, R. Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. J. Biomed. Mater. Res. Part A 2009, 90, 648–655. [Google Scholar] [CrossRef]
- Hatchett, D.W. Solid State Electrochemistry I: Fundamentals, Materials and their Applications Solid State Electrochemistry I: Fundamentals, Materials and their Applications. J. Am. Chem. Soc. 2010, 132, 9220–9221. [Google Scholar] [CrossRef]
- Memming, R. Semiconductor Electrochemistry; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Rose, A. Space-Charge-Limited Currents in Solids. Phys. Rev. 1955, 97, 1538–1544. [Google Scholar] [CrossRef]
- Lampert, M.A. Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Phys. Rev. 1956, 103, 1648–1656. [Google Scholar] [CrossRef]
- Many, A.; Rakavy, G. Theory of Transient Space-Charge-Limited Currents in Solids in the Presence of Trapping. Phys. Rev. 1962, 126, 1980–1988. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yang, S.; Sheng, K. The Leakage Mechanism of the Package of the AlGaN/GaN Liquid Sensor. Materials 2020, 13, 1903. https://doi.org/10.3390/ma13081903
Zhang H, Yang S, Sheng K. The Leakage Mechanism of the Package of the AlGaN/GaN Liquid Sensor. Materials. 2020; 13(8):1903. https://doi.org/10.3390/ma13081903
Chicago/Turabian StyleZhang, Hanyuan, Shu Yang, and Kuang Sheng. 2020. "The Leakage Mechanism of the Package of the AlGaN/GaN Liquid Sensor" Materials 13, no. 8: 1903. https://doi.org/10.3390/ma13081903
APA StyleZhang, H., Yang, S., & Sheng, K. (2020). The Leakage Mechanism of the Package of the AlGaN/GaN Liquid Sensor. Materials, 13(8), 1903. https://doi.org/10.3390/ma13081903