Effect of sp3 Content on Adhesion and Tribological Properties of Non-Hydrogenated DLC Films
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Raman and XPS Spectra
3.2. Adhesion Strength
3.3. Tribological Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Donnet, C.; Erdemir, A. Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 2004, 180, 76–84. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef] [Green Version]
- Irmer, G.; Dorner-Reisel, A. Micro-Raman Studies on DLC coatings. Adv. Eng. Mater. 2010, 7, 694–705. [Google Scholar] [CrossRef]
- Cui, W.G.; Lai, Q.B.; Zhang, L.; Wang, F.M. Quantitative measurements of sp 3 content in DLC films with Raman spectroscopy. Surf. Coat. Technol. 2010, 205, 1995–1999. [Google Scholar] [CrossRef]
- Leung, T.Y.; Man, W.F.; Lim, P.K.; Chan, W.C.; Gaspari, F.; Zukotynski, S. Determination of the sp3/sp2 ratio of a-C:H by XPS and XAES. J. Non-Cryst. Solids 1999, 254, 156–160. [Google Scholar] [CrossRef]
- Dai, M.; Zhou, K.; Yuan, Z.; Ding, Q.; Fu, Z. The cutting performance of diamond and DLC-coated cutting tools. Diam. Relat. Mater. 2000, 9, 1753–1757. [Google Scholar] [CrossRef]
- Minaki, K.; Kitajima, K.; Nakahira, Y.; Ohnishi, M.; Sugimoto, T.; Kaminomura, S. Development of DLC Coated Tool For Cutting Of Aluminum Alloy: Influence Of Deposition Condition On Cutting Characteristic. Key Eng. Mater. 2009, 389–390, 163–168. [Google Scholar] [CrossRef]
- Horiuchi, T.; Yoshida, K.; Okuda, T.; Kano, M.; Kumagai, M.; Suzuki, T. Session 01: DLC coatings OA 01 P2009-245 evaluation of adhesion strength and wear resistance of DLC films. Surf. Coat. Technol. 2010, 205, S188–S195. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Grigoriev, S.N.; Volosova, M.A.; Batako, A.; Vereschaka, A.S.; Sitnikov, N.N.; Seleznev, A.E. Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools. Int. J. Adv. Manuf. Technol. 2017, 90, 1–17. [Google Scholar] [CrossRef]
- Ze, S.; Dejun, K. Effect of load on the friction-wear behavior of magnetron sputtered DLC film at high temperature. Mater. Res. Express 2017, 4, 016404. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.; Dasch, J.M.; Wagg, T.; Yamamoto, K.; Veldhuis, S.; Dosbaeva, G.K.; Tauhiduzzaman, M. Cutting performance of different coatings during minimum quantity lubrication drilling of aluminum silicon B319 cast alloy. Surf. Coat. Technol. 2011, 205, 4107–4116. [Google Scholar] [CrossRef]
- Vandevelde, T.C.; Vandierendonck, K.; Van Stappen, M.; Du Mong, W.; Perremans, P. Cutting applications of DLC, hard carbon and diamond films 1. Surf. Coat. Technol. 1999, 113, 80–85. [Google Scholar] [CrossRef]
- Choi, J.; Kato, T. Self-assembled monolayers on ta-C surfaces: Effect of sp3/sp2 ratio on adsorption rate and friction. J. Appl. Phys. 2003, 93, 8722–8724. [Google Scholar] [CrossRef]
- Tang, J. Study on deposition of amorphous hydrogenate DLC films on germanium substrates by RF-PECVD. Proc. SPIE Int. Soc. Opt. Eng. 2009, 31, 622–626. [Google Scholar]
- Ji, X.W.; Xu, Z.H.; He, L.L.; He, L.M. Influences of substrate negative bias voltage on microstructure and performance of DLC coatings. J. Mater. Eng. 2015. [Google Scholar] [CrossRef]
- Mabuchi, Y.; Higuchi, T.; Weihnacht, V. Effect of sp2/sp3 bonding ratio and nitrogen content on friction properties of hydrogen-free DLC coatings. Tribol. Int. 2013, 62, 130–140. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Ji, Z.; Xie, Y. Friction and wear behavior of hydrogenated diamond-like carbon coating against titanium alloys under large normal load and variable velocity. Ind. Lubr. Tribol. 2017, 69, 199–207. [Google Scholar] [CrossRef]
- Konca, E.; Cheng, Y.T.; Alpas, A.T. Dry sliding behaviour of non-hydrogenated DLC coatings against Al, Cu and Ti in ambient air and argon. Diam. Relat. Mater. 2006, 15, 939–943. [Google Scholar] [CrossRef]
- Ronkainen, H.; Varjus, S.; Holmberg, K. Friction and wear properties in dry, water- and oil-lubricated DLC against alumina and DLC against steel contacts. Wear 1998, 222, 120–128. [Google Scholar] [CrossRef]
- Suzuki, M.; Saito, T.; Tanaka, A. Tribological properties of DLC films against different steels. Wear 2013, 304, 83–87. [Google Scholar] [CrossRef]
- Xia, L.; Li, G. The frictional behavior of DLC films against bearing steel balls and Si3N4 balls in different humid air and vacuum environments. Wear 2008, 264, 1077–1084. [Google Scholar] [CrossRef]
- Konca, E.; Cheng, Y.T.; Weiner, A.M.; Dasch, J.M.; Alpas, A.T. Effect of test atmosphere on the tribological behaviour of the non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy and tungsten carbide. Surf. Coat. Technol. 2005, 200, 1783–1791. [Google Scholar] [CrossRef]
- Banerji, A.; Bhowmick, S.; Alpas, A.T. High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys. Surf. Coat. Technol. 2014, 241, 93–104. [Google Scholar] [CrossRef]
- Gharam, A.A.; Lukitsch, M.J.; Qi, Y.; Alpas, A.T. Role of oxygen and humidity on the tribo-chemical behaviour of non-hydrogenated diamond-like carbon coatings. Wear 2011, 271, 2157–2163. [Google Scholar] [CrossRef]
- Huang, L.; Yuan, J.T.; Wang, Z.H.; Yu, B.B. Effect of the Temperature on Diamond-Like Carbon(DLC) Thin Film Based on LIS. Appl. Mech. Mater. 2013, 421, 212–216. [Google Scholar] [CrossRef]
- Nguyen, T.; Ulrich, S.; Bsul, J.; Beauvais, S.; Burger, W.; Albers, A.; Stüber, M.; Ye, J. Influence of argon gas pressure and target power on magnetron plasma parameters. Diam. Relat. Mater. 2009, 18, 995–998. [Google Scholar] [CrossRef]
- Choi, J.; Nakao, S.; Ikeyama, M.; Kato, T. Effect of deposition pressure on the properties of DLC coatings deposited by bipolar-type PBII&D. Surf. Interface Anal. 2008, 40, 806–809. [Google Scholar]
- Jiang, M.; Ning, Z. Structure evolution of fluorinated diamond-like carbon films prepared at varying source gas flow ratios. J. Non-Cryst. Solids 2005, 351, 2462–2467. [Google Scholar] [CrossRef]
- Kim, W.J.; Kim, J.G.; Park, S.J.; Lee, K.R. Tribological and electrochemical characteristics of DLC coatings with bias voltage. Met. Mater. Int. 2005, 11, 473–480. [Google Scholar] [CrossRef]
- Seo, S.C.; Ingram, D.C.; Richardson, H.H. Effect of substrate bias on the properties of diamondlike carbon films deposited using unbalanced magnetron sputtering. J. Vac. Sci. Technol. A Vac. Surf. Film. 1995, 13, 2856–2862. [Google Scholar] [CrossRef]
- Cui, J.F.; Qiang, L.; Zhang, B.; Ling, X.; Zhang, J.Y. Effect of Substrate Bias Voltage on the Mechanical and Tribological Properties of Low Concentration Ti-Containing Diamond Like Carbon Films. Appl. Mech. Mater. 2012, 182–183, 232–236. [Google Scholar] [CrossRef]
- Nakao, S.; Yukimura, K.; Nakano, S.; Ogiso, H. DLC Coating by HiPIMS: The Influence of Substrate Bias Voltage. IEEE Trans. Plasma Sci. 2013, 41, 1819–1829. [Google Scholar] [CrossRef]
- Sheeja, D.; Tay, B.K.; Lau, S.P.; Shi, X. Tribological properties and adhesive strength of DLC coatings prepared under different substrate bias voltages. Wear 2001, 249, 433–439. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Kong, J.; Zhang, Y.; Zhang, W. Multilayer DLC coatings via alternating bias during magnetron sputtering. Thin Solid Film. 2011, 519, 4910–4916. [Google Scholar] [CrossRef]
- Lascovich, J.C.; Giorgi, R.; Scaglione, S. Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES. Appl. Surf. Sci. 1991, 47, 17–21. [Google Scholar] [CrossRef]
- Cuomo, J.J.; Doyle, J.P.; Bruley, J.; Liu, J.C. Sputter deposition of dense diamond-like carbon films at low temperature. Appl. Phys. Lett. 1991, 58, 466. [Google Scholar] [CrossRef]
- Aijaz, A.; Sarakinos, K.; Lundin, D.; Brenning, N.; Helmersson, U. A strategy for increased carbon ionization in magnetron sputtering discharges. Diam. Relat. Mater. 2012, 23, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Casiraghi, C.; Robertson, J.; Ferrari, A.C. Diamond-like carbon for data and beer storage. Mater. Today 2007, 10, 44–53. [Google Scholar] [CrossRef]
Sample | Bias Voltage (V) | DLC Thickness (nm) | Surface Roughness (nm) | Ratio of sp3/sp2 Content |
---|---|---|---|---|
1 | 175 | 645 | 14.82 | 0.77 |
2 | 200 | 611 | 18.63 | 0.75 |
3 | 225 | 559 | 15.97 | 0.74 |
4 | 250 | 472 | 17.28 | 0.79 |
5 | 275 | 378 | 18.17 | 0.83 |
6 | 300 | 337 | 20.70 | 0.98 |
Wear Scratch on DLC (%) | Wear Mark on Balls (%) | Wear Debris (%) | |
---|---|---|---|
C | 87.86 | 22.93 | 75.46 |
O | 10.35 | 45.65 | 16.90 |
Al | 0.29 | 4.32 | 1.92 |
Ti | 1.50 | 27.10 | 5.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Huang, L.; Yuan, J. Effect of sp3 Content on Adhesion and Tribological Properties of Non-Hydrogenated DLC Films. Materials 2020, 13, 1911. https://doi.org/10.3390/ma13081911
Li C, Huang L, Yuan J. Effect of sp3 Content on Adhesion and Tribological Properties of Non-Hydrogenated DLC Films. Materials. 2020; 13(8):1911. https://doi.org/10.3390/ma13081911
Chicago/Turabian StyleLi, Chao, Lei Huang, and Juntang Yuan. 2020. "Effect of sp3 Content on Adhesion and Tribological Properties of Non-Hydrogenated DLC Films" Materials 13, no. 8: 1911. https://doi.org/10.3390/ma13081911
APA StyleLi, C., Huang, L., & Yuan, J. (2020). Effect of sp3 Content on Adhesion and Tribological Properties of Non-Hydrogenated DLC Films. Materials, 13(8), 1911. https://doi.org/10.3390/ma13081911