Fabrication of QFN-Packaged Miniaturized GaAs-Based Bandpass Filter with Intertwined Inductors and Dendritic Capacitor
Abstract
:1. Introduction
2. Design and Fabrication
2.1. Design and Circuit Analysis
2.1.1. Model inside the Segment Box
2.1.2. Models outside the Segment Box
2.1.3. Embedded Capacitor
2.1.4. Substrate-Related Parasitic Effects
2.2. Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lim, T.B.; Zhu, L. Highly selective differential-mode wideband bandpass filter for UWB application. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 133–135. [Google Scholar] [CrossRef]
- Tang, C.W.; Shen, C.W.; Hsieh, P.J. Design of low-temperature co-fired ceramic bandpass filters with modified coupled inductors. IEEE Trans. Microw. Theory Tech. 2008, 57, 172–179. [Google Scholar] [CrossRef]
- Wang, K.X.; Liu, X.F.; Li, Y.C.; Lin, L.Z.; Zhao, X.L. LTCC filtering rat-race coupler based on eight-line spatially-symmetrical coupled structure. IEEE Access 2017, 6, 262–269. [Google Scholar] [CrossRef]
- McCulloch, M.A.; Melhuish, S.J.; Piccirillo, L. Enhancing the noise performance of monolithic microwave integrated circuit-based low noise amplifiers through the use of a discrete preamplifying transistor. J. Astron. Telesc. Instrum. Syst. 2014, 1, 016001. [Google Scholar] [CrossRef]
- Robertson, I.D.; Lucyszyn, S. (Eds.) RFIC and MMIC Design and Technology; No. 13. Iet; IET: London, UK, 2001; pp. 7–10. [Google Scholar]
- Tsukamoto, O.; Ogawa, J. Perspectives of elementary technologies for AC power applications of high temperature superconductors. J. Mater. Process. Technol. 2007, 181, 6–11. [Google Scholar] [CrossRef]
- Lei, D.; Wang, T.; Cao, D.; Fei, J. Adaptive dynamic surface control of MEMS gyroscope sensor using fuzzy compensator. IEEE Access 2016, 4, 4148–4154. [Google Scholar] [CrossRef]
- Adhikari, K.K.; Kim, N.Y. Ultrahigh-sensitivity mediator-free biosensor based on a microfabricated microwave resonator for the detection of micromolar glucose concentrations. IEEE Trans. Microw. Theory Tech. 2015, 64, 319–327. [Google Scholar] [CrossRef]
- Kim, N.Y.; Dhakal, R.; Adhikari, K.K.; Kim, E.S.; Wang, C. A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level. Biosens. Bioelectron. 2015, 67, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Kim, N. Micro-fabricated resonator based on inscribing a meandered-line coupling capacitor in an air-bridged circular spiral inductor. Micromachines 2018, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Kim, N.Y. Analytical optimization of high-performance and high-yield spiral inductor in integrated passive device technology. Microelectron. J. 2012, 43, 176–181. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Kim, N.Y. A high performance compact Wilkinson power divider using GaAs-based optimized integrated passive device fabrication process for LTE application. Solid-State Electron. 2015, 103, 147–153. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Q.; Song, C.; Cheng, Y. Similarity-based difference analysis approach for remaining useful life prediction of GaAsbased semiconductor lasers. IEEE Access 2017, 5, 21508–21523. [Google Scholar] [CrossRef]
- Nitesh, R.S.; Rajendran, J.; Ramiah, H.; Manaf, A.A. A 700 MHz to 2.5 GHz cascode GaAs power amplifier for multi-band pico-cell achieving 20 dB Gain, 40 dBm to 45 dBm OIP3 and 66% Peak PAE. IEEE Access 2018, 6, 818–829. [Google Scholar] [CrossRef]
- Khubchandani, S.; Hodkiewicz, M.R.; Keating, A. Characterizing the performance of LED reflective distance sensors. IEEE Access 2017, 5, 14289–14297. [Google Scholar] [CrossRef]
- Kim, N.Y.; Adhikari, K.K.; Dhakal, R.; Chuluunbaatar, Z.; Wang, C.; Kim, E.S. Rapid, sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, R.; Wang, C.; Kim, E.S.; Kim, N.Y. Complex permittivity characterization of serum with an air-bridge enhanced capacitor for quantifiable detection of glucose. Appl. Phys. Lett. 2015, 106, 073702073706. [Google Scholar] [CrossRef]
- Chen, J.; Liou, J.J. Improved and physical-based model for symmetrical spiral inductors. IEEE Trans. Electron. Devices 2006, 53, 1300–1309. [Google Scholar] [CrossRef]
- Bahl, I.J. Lumped Elements for RF and Microwave Circuit, 1st ed.; Artech House: London, UK, 2003; pp. 17–36. [Google Scholar]
- Chen, J. On-Chip Spiral Inductor Transformer Design and Modeling for RF Applications. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2006. [Google Scholar]
- Matthaei, G.L.; Chinn, G.C.; Plott, C.H.; Dagli, N. A simplified means for computation for interconnect distributed capacitances and inductances. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1992, 11, 513–524. [Google Scholar] [CrossRef]
- Cao, Y.; Groves, R.A.; Zamdmer, N.D.; Plouchart, J.O.; Wachnik, R.A.; Huang, X.J.; King, T.J.; Hu, C.M. Frequency-independent equivalent-circuit model for on-chip spiral inductors. IEEE J. Solid-State Circuits 2003, 38, 419–426. [Google Scholar] [CrossRef]
- Yuan, J.S.; Eisenstadt, W.R.; Liou, J.J. A novel lossy and dispersive interconnect model for integrated circuit simulation. IEEE Trans. Comp. Hybrids. Manuf. Technol. 1990, 13, 275–280. [Google Scholar] [CrossRef]
- Lim, K.; Pinel, S.; Davis, M.F.; Sutono, A.; Lee, C.H.; Heo, D.; Obatoynbo, A.; Laskar, J.; Tentzeris, E.M.; Tummala, R. RF-system-on-package (SOP) for wireless communications. IEEE Microw. Mag. 2002, 3, 88–99. [Google Scholar]
- Nirmalathas, A.; Lim, C.; Novak, D.; Castleford, D.; Waterhouse, R.; Smith, G. Millimeter-wave fiber-wireless access systems incorporating wavelength division multiplexing. In Proceedings of the 2000 Asia-Pacific Microwave Conference, Sydney, Australia, 3–6 December 2000. [Google Scholar]
- Hong, J.S. Microstrip Filters for RF/Microwave Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 203–263. ISBN 978-0-470-40877-3. [Google Scholar]
- Nooshnab, V.; Ahmadivand, A. Optothermally Functional Charge Transfer Plasmon Modulator. IEEE Photon. Technol. Lett. 2017, 29, 1556–1559. [Google Scholar] [CrossRef]
- Kruger, B.A.; Joushaghani, A.; Poon, J.K.S. Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches. Opt. Express 2012, 20, 23598–23609. [Google Scholar] [CrossRef] [PubMed]
- Quan, C.H.; Wang, Z.J.; Lee, J.C.; Kim, E.S.; Kim, N.Y. A Highly Selective and Compact Bandpass Filter with a Circular Spiral Inductor and an Embedded Capacitor Structure Using an Integrated Passive Device Technology on a GaAs Substrate. Electronics 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z. Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator. Nanoscale 2019, 11, 8091–8095. [Google Scholar] [CrossRef]
- Wu, Z.; Shim, Y.; Rais-Zadeh, M. Miniaturized UWB filters integrated with tunable notch filters using a silicon-based integrated passive device technology. IEEE Trans. Microw. Theory Tech. 2012, 60, 518–527. [Google Scholar] [CrossRef]
- Pan, J.; Wang, H.; Tian, G.; Cao, L.; Yu, D. Design of a compact silicon-based integrated passive band-pass filter with two tunable finite transmission zeros. Microelectron. J. 2016, 49, 43–48. [Google Scholar] [CrossRef]
- Wong, K.W.; Mansour, R.R.; Weale, G. Reconfigurable bandstop and bandpass filters with wideband balun using IPD technology for frequency agile applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 610–620. [Google Scholar] [CrossRef]
- Sitaraman, S.; Sukumaran, V.; Pulugurtha, M.R.; Wu, Z.; Suzuki, Y.; Kim, Y.; Sundaram, V.; Kim, J.; Tummala, R.R. Miniaturized bandpass filters as ultrathin 3-D IPDs and embedded thinfilms in 3-D glass modules. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1410–1418. [Google Scholar] [CrossRef]
- Wu, S.M.; Hsu, R.F.; Yu, P.H. Signal integrity and electromagnetic broadband packaging model extraction of full differential bandpass filter on IPD with BGA packaging. Prog. Electromagn. Res. 2013, 141, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Barker, N.S.; Tang, X.H. Miniaturized two-pole lumped BPF with four controllable TZs using multiple coupling paths. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 563–565. [Google Scholar] [CrossRef]
- Liu, H.W.; Ren, B.P.; Liu, F.; Guan, X.H.; Wen, P.; Ma, Z.W. Dual-Band High-Temperature Superconducting Bandpass Filter Using Dual-Mode Hairpin Ring Resonator. IEEE Trans. Appl. Supercond. 2016, 26, 1501704. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Yang, Y.J.; Chen, J.X. High-performance bandpass filter using HTCC stepped-impedance resonators. IET Microw. Antennas Propag. 2018, 12, 56–62. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Dai, X.; Kao, H.L.; Wei, B.H.; Cai, Z.Y.; Xue, Q. Compact LTCC Bandpass Filter With Wide Stopband Using Discriminating Coupling. IEEE Trans. Microw. Theory Technol. 2014, 4, 656–663. [Google Scholar] [CrossRef]
Fabrication Objective | Technique | Material |
---|---|---|
Passivation layer | PECVD | SiNx |
Photoresistor | Spin-coating | Negative/positive PR |
PR removal | Lift-off | Acetone |
Seed metal | Sputtering | Ti/Au |
Metal layer | Electroplating | Cu/Au |
Via | ICP etching | SF6/O6 |
References | Technology | Fractional Band Width (%) | Passband (GHz) | Insertion Loss (dB) | Return Loss (dB) | Circuit Area |
---|---|---|---|---|---|---|
[31] | Silicon IPD | 107.63 (3 dB) | 6.5 | 1.1 | 15 | 0.219 λ0 × 0.181 λ0 |
[32] | Silicon IPD | 33.33 (3 dB) | 2.4 | 2.3 | 10 | 0.024 λ0 × 0.024 λ0 |
[33] | Silicon IPD | 16 (10 dB) | 1.7 | 2.56 | 12 | 0.039 λ0 × 0.037 λ0 |
[34] | Glass IPD | 49.62 (3 dB) | 2.6 | 0.6 | 30 | 0.018 λ0 × 0.009 λ0 |
[35] | Glass IPD | 36.73 (10 dB) | 2.1 | 3.2 | 22 | 0.019 λ0 × 0.019 λ0 |
This work | GaAs IPD | 71.94 (3 dB) | 2.21 | 0.38 | 26.45 | 0.021 λ0 × 0.021 λ0 (0.8 × 0.8 mm2) |
References | Technology | Fractional Band Width (%) | Insertion Loss (dB) | Return Loss (dB) | Passband (GHz) | Circuit Area |
---|---|---|---|---|---|---|
[36] | Microstrip | 13.3 | 1.1 | > 20 | 0.975 | 0.094 λ0 × 0.08 λ0 |
[37] | HTS | 2.6/2.4 | 0.18/0.32 | > 16 | 1.9/2.6 | 0.182 λ0 × 0.156 λ0 |
[38] | HTCC | 5.5 | 1.8 | > 15 | 2.25 | 6.9 × 39.9 mm2 |
[39] | LTCC | 12.5 | 2.4 | 15 | 2.4 | 0.058 λ0 × 0.058 λ0 |
This work | GaAs IPD | 71.94 | 0.38 | 26.45 | 2.21 | 0.021 λ0 × 0.021 λ0 (0.8 × 0.8 mm2) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, Z.-J.; Zhu, B.-H.; Kim, E.-S.; Kim, N.-Y. Fabrication of QFN-Packaged Miniaturized GaAs-Based Bandpass Filter with Intertwined Inductors and Dendritic Capacitor. Materials 2020, 13, 1932. https://doi.org/10.3390/ma13081932
Chen J, Wang Z-J, Zhu B-H, Kim E-S, Kim N-Y. Fabrication of QFN-Packaged Miniaturized GaAs-Based Bandpass Filter with Intertwined Inductors and Dendritic Capacitor. Materials. 2020; 13(8):1932. https://doi.org/10.3390/ma13081932
Chicago/Turabian StyleChen, Jian, Zhi-Ji Wang, Bao-Hua Zhu, Eun-Seong Kim, and Nam-Young Kim. 2020. "Fabrication of QFN-Packaged Miniaturized GaAs-Based Bandpass Filter with Intertwined Inductors and Dendritic Capacitor" Materials 13, no. 8: 1932. https://doi.org/10.3390/ma13081932
APA StyleChen, J., Wang, Z. -J., Zhu, B. -H., Kim, E. -S., & Kim, N. -Y. (2020). Fabrication of QFN-Packaged Miniaturized GaAs-Based Bandpass Filter with Intertwined Inductors and Dendritic Capacitor. Materials, 13(8), 1932. https://doi.org/10.3390/ma13081932