Effects of Ultrasonic Bending Vibration Introduced by an L-Shaped Ultrasonic Rod on the Microstructure and Properties of a 1060 Aluminum Alloy Strip Formed by Twin-Roll Casting
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Equipment
2.2. Experimental Material
2.3. Experimental Procedures
2.4. Test Method
2.4.1. Microstructure Analysis of the Cast Rolling Strip Samples
2.4.2. Microstructure Analysis of the Cold Rolling Strip Samples
2.4.3. Test Mechanical Properties
3. Results and Discussions
3.1. Effect of the Ultrasonic Bending Vibration on the Grain Microstructure of the 1060 Aluminum Alloy Cast Rolling Strip and Subsequent Cold Rolling Strip
3.2. Effect of the Ultrasonic Bending Vibration on the Precipitated Phases of the 1060 Aluminum Alloy Cast Rolling Strip and Subsequent Cold Rolling Strip
3.3. The Effect of the Ultrasonic Bending Vibration on the Mechanical Properties of the 1060 Aluminum Alloy Cast Rolling Strips and Subsequent Cold Rolling Strips
3.4. Discussion
4. Conclusions
- (1)
- When the ultrasonic bending vibration is applied to the 1060 aluminum alloy during continuous casting and rolling under the condition of the same amount of Al-Ti-B refiner, the grains of the cast rolling strip are refined, the precipitated phases are dispersed and evenly distributed, the defects are obviously reduced, and the mechanical properties of the cast rolling strip are improved. The microstructure and properties of the ultrasonic cast rolling strip with 0.18 wt% Al-Ti-B refiner or 0.12 wt% Al-Ti-B refiner are better than those of the conventional cast rolling strip, but the microstructure and properties of the ultrasonic cast rolling strip with the 0.09 wt% Al-Ti-B refiner are worse than those of the conventional cast rolling strip.
- (2)
- The microstructure and properties of the 1060 aluminum alloy ultrasonic cast rolling strips after cold rolling with 0.18 wt% Al-Ti-B refiner or 0.12 wt% Al-Ti-B refiner are better than those of the conventional cast rolling strip after cold rolling, but the microstructure and properties of the ultrasonic cast rolling strip with added 0.09 wt% Al-Ti-B refiner are worse than those of conventional cast rolling strip. This indicates that the effect of the ultrasonic bending vibration on the improvement of the microstructure and properties of the aluminum alloy strips is inherited during the cold rolling process, which is conducive to further processing.
- (3)
- Applying the ultrasonic bending vibration during the continuous casting and rolling of the 1060 aluminum alloy can reduce the addition of Al-Ti-B refiner by 1/3. The L-shaped ultrasonic rod is resistant to high temperatures, and the transducer is not affected by the direct high temperature radiation of the aluminum melt. In addition, the nano ceramic radiator will not be eroded by long-term contact with the aluminum melt, which can realize continuous industrial production and reduce the production costs of industrial production.
Author Contributions
Funding
Conflicts of Interest
References
- Cui, J.J.; Chen, L.Q.; L, Y.F.; Liu, J.H.; Yang, Y.F.; Xie, J.J. Effect of annealing on mechanical properties of low temperature cold rolling 1060 aluminum alloy. Heat. Treat. Met. 2018, 11, 111–116. [Google Scholar]
- Sun, F.L.; Li, X.G.; Lu, L.; Cheng, X.Q.; Dong, C.F.; Gao, J. Corrosion behavior of 5052 and 6061 aluminum alloys in the deep sea environment of South China sea. Acta Metall. Sin. 2013, 49, 1219–1226. [Google Scholar] [CrossRef]
- Pongen, R.; Birru, A.K.; Parthiban, P. Study of microstructure and mechanical properties of A713 aluminium alloy having an addition of grain refiners Al-3.5 Ti-1.5C and Al-3Cobalt. Results Phys. 2019, 13, 102105. [Google Scholar] [CrossRef]
- Shivank, A.T.; Neha, B.; Prashant, V.; Smriti, M. Improving surface hardness of aluminum 6063 alloy using hardfacing. Mater. Today 2020. [Google Scholar] [CrossRef]
- Limmaneevichitr, C.; Eidhed, W. Novel technique for grain refinement in aluminum casting by Al–Ti–B powder injection. Mat. Sci. Eng. R. 2003, 355, 174–179. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhong, J.H. Research status and analysis of master alloys for grain refinement of aluminum alloys. Alum. Fabr. 2002, 1, 24–26. [Google Scholar]
- Lv, Y.N.; D, R.; Xu, G.M. Effect of refiner on microstructure and properties of 5052 aluminum alloy rolling. Strip. Foundry. Technol. 2018, 6, 1218–1220. [Google Scholar]
- Liu, H.C. Study on Al-Ti-B-Re Master Alloy Refiner; Dalian University of Technology: Dalian, China, 2007. [Google Scholar]
- Lan, H.F.; Guo, P.; Zhang, J.J. Effect of rare earth on refinement properties of Al-Ti-B-RE master alloy. Foundry. Technol. 2005, 9, 774–775+778. [Google Scholar]
- Venkateswarlu, K.; Murty, B.; Chakraborty, M. Effect of hot rolling and heat treatment of Al–5Ti–1B master alloy on the grain refining efficiency of aluminium. Mater. Sci. Eng. A 2001, 301, 180–186. [Google Scholar] [CrossRef]
- Doheim, M.A.; Omran, A.M.; Abdel-Gwad, A.; Sayed, G.A. Evaluation of Al-Ti-C Master Alloys as Grain Refiner for Aluminum and Its Alloys. Met. Mater. Trans. A 2011, 42, 2862–2867. [Google Scholar] [CrossRef]
- Easton, M.; Qian, M.; Prasad, A.; StJohn, D. Recent advances in grain refinement of light metals and alloys. Curr. Opin. Solid State Mater. Sci. 2016, 20, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Qian, M.; Ramirez, A.; Das, A.; StJohn, D. The effect of solute on ultrasonic grain refinement of magnesium alloys. J. Cryst. Growth 2010, 312, 2267–2272. [Google Scholar] [CrossRef]
- Wang, G.; Dargusch, M.; Qian, M.; Eskin, D.; StJohn, D. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al–2Cu alloy. J. Cryst. Growth 2014, 408, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.-Y.; Luo, J.; Jing, J.-X.; Xia, Z.-Q.; Zhai, Q. Structure refinement of pure aluminum by pulse magneto-oscillation. Mater. Sci. Eng. A 2008, 497, 147–152. [Google Scholar] [CrossRef]
- Liang, N.; Liang, Z.; Zhai, Q.; Wang, G.; StJohn, D. Nucleation and grain formation of pure Al under Pulsed Magneto-Oscillation treatment. Mater. Lett. 2014, 130, 48–50. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.X. Industrial Experiment and Mechanism Research of Ultrasonic Continuous Casting and Rolling of 3003 Aluminum Alloy; Central South University: Changsha, China, 2011. [Google Scholar]
- Shi, C.; Shen, K. Twin-roll casting 8011 aluminium alloy strips under ultrasonic energy field. Int. J. Light. Mater. Manuf. 2018, 1, 108–114. [Google Scholar] [CrossRef]
- Xu, G.M.; Pan, J.S. Effect of electromagnetic field on microstructure of 1100 aluminum alloy cast-rolling strip. J. Northeast. Univ. 2014, 6, 800–803. [Google Scholar]
- Wang, C.N.; Connolley, T.; Tzanakis, L.; Eskin, D.; Mi, J.W. Characterization of Ultrasonic Bubble Clouds in A Liquid Metal by Synchrotron X-ray High Speed Imaging and Statistical Analysis. Materials 2019, 13, 44. [Google Scholar] [CrossRef] [Green Version]
- Eskin, D.; Al-Helal, K.; Tzanakis, I. Application of a plate sonotrode to ultrasonic degassing of aluminum melt: Acoustic measurements and feasibility study. J. Mater. Process. Technol. 2015, 222, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.L.; Liu, Z.L.; Jiang, R.P.; Li, R.Q.; Li, X.Q. Microstructural evolution and mechanical properties of the AA2219/TiC nanocomposite manufactured by ultrasonic solidification. J. Alloy. Compd. 2019, 11, 151991. [Google Scholar] [CrossRef]
- Puga, H.; Barbosa, J.; Machado, J.; Vilarinho, C. Ultrasonic grain refinement of die cast copper alloys. J. Mater. Process. Technol. 2019, 263, 336–342. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Li, C.; Huang, C.; Friedrich, B. Elimination of edge cracks and centerline segregation of twin-roll cast aluminum strip by ultrasonic melt treatment. J. Mater. Res. Technol. 2020. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Z.L.; Li, X.Q.; Li, R.Q.; Zhang, L.H.; Jiang, R.P.; Dong, F. The cavitation erosion of ultrasonic sonotrode during large-scalemetallic casting: Experiment and simulation. Ultrason. Sonohem. 2018, 37, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, X.Q.; Zhang, L.H.; Ma, L.Y.; Li, R.Q. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt. Ultrason. Sonohem. 2016, 31, 150–156. [Google Scholar] [CrossRef]
- Ėskin, G.I.; Eskin, D.G. Ultrasonic Treatment of Light Alloy Melts; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Shi, C.; Wu, Y.; Mao, D.; Fan, G. Effect of Ultrasonic Bending Vibration Introduced by the L-shaped Ultrasonic Rod on Solidification Structure and Segregation of Large 2A14 Ingots. Materials 2020, 13, 807. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Fang, Y. Al-Ti-B Master Alloy Refining Pure Aluminum Treatment. Available online: cprs.patentstar.com.cn (accessed on 24 December 2008).
- Pattnaik, A.B.; Das, S.; Jha, B.B.; Prasanth, N. Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy. J. Mater. Res. Technol. 2015, 4, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.W.; Zhao, X.Y.; Chen, T.L.; Zhang, H.X.; Liu, X.X.; Cheng, Y.; Lei, D.K. Effect of rare earth Y and Al–Ti–B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy. J. Alloy. Compd. 2020, 830, 154685. [Google Scholar] [CrossRef]
- Ma, T.; Chen, Z.; Nie, Z.; Huang, H. Microstructure of Al-Ti-B-Er refiner and its grain refining performance. J. Rare Earths 2013, 31, 622–627. [Google Scholar] [CrossRef]
- Nie, J.; Ma, X.; Ding, H.; Liu, X. Microstructure and grain refining performance of a new Al–Ti–C–B master alloy. J. Alloy. Compd. 2009, 486, 185–190. [Google Scholar] [CrossRef]
- Birol, Y. The performance of Al–Ti–C grain refiners in twin-roll casting of aluminium foilstock. J. Alloy. Compd. 2007, 430, 179–187. [Google Scholar] [CrossRef]
- Limmaneevichitr, C.; Eidhed, W. Fading mechanism of grain refinement of aluminum–silicon alloy with Al–Ti–B grain refiners. Mater. Sci. Eng. A 2003, 349, 197–206. [Google Scholar] [CrossRef]
Si | Cu | Mg | Zn | Mn | Ti | V | Fe | Al |
---|---|---|---|---|---|---|---|---|
≤0.25 | ≤0.05 | ≤0.05 | ≤0.05 | ≤0.05 | ≤0.03 | ≤0.05 | 0–0.4 | Bal. |
Samples | Direction | Tensile Strength/MPa | Yield Strength/MPa | Elongation/% | Reduction in Area/% |
---|---|---|---|---|---|
0.18 wt% Al-Ti-B conventional | RD (cast rolling direction) | 91.26 | 64.15 | 49.8 | 85.79 |
45° | 84.66 | 62.46 | 46.16 | 88.12 | |
TD (transverse cast rolling direction) | 90.54 | 65.57 | 49.24 | 85.69 | |
0.18 wt% Al-Ti-B ultrasound | RD | 93.46 | 64.18 | 51.28 | 87.98 |
45° | 86.02 | 65.05 | 46.48 | 91.58 | |
TD | 92.25 | 61.06 | 56.76 | 85.18 | |
0.12 wt% Al-Ti-B ultrasound | RD | 91.09 | 62.37 | 49.88 | 90.14 |
45° | 84.96 | 62.29 | 45.72 | 90.63 | |
TD | 90.95 | 65.63 | 53.56 | 85.36 | |
0.09 wt% Al-Ti-B ultrasound | RD | 91.74 | 62.05 | 49.00 | 88.02 |
45° | 84.95 | 62.88 | 47.48 | 90.13 | |
TD | 90.62 | 63.75 | 52.64 | 85.52 |
Samples | Direction | Tensile Strength/MPa | Yield Strength/MPa | Elongation/% |
---|---|---|---|---|
0.18 wt% Al-Ti-B conventional | RD | 150.73 | 148.10 | 2.92 |
45° | 145.06 | 141.40 | 3.8 | |
TD | 153.51 | 153.00 | 2.04 | |
0.18 wt% Al-Ti-B ultrasound | RD | 167.02 | 165.48 | 2.96 |
45° | 153.5 | 149.58 | 3.08 | |
TD | 157.38 | 156.61 | 3.08 | |
0.12 wt% Al-Ti-B ultrasound | RD | 165.4 | 165.15 | 2.61 |
45° | 156.75 | 154.94 | 3.25 | |
TD | 153.02 | 153.02 | 2.12 | |
0.09 wt% Al-Ti-B ultrasound | RD | 152.85 | 152.22 | 1.85 |
45° | 149.7 | 145.92 | 2.52 | |
TD | 154.3 | 153.53 | 3.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Fan, G.; Mao, X.; Mao, D. Effects of Ultrasonic Bending Vibration Introduced by an L-Shaped Ultrasonic Rod on the Microstructure and Properties of a 1060 Aluminum Alloy Strip Formed by Twin-Roll Casting. Materials 2020, 13, 2013. https://doi.org/10.3390/ma13092013
Shi C, Fan G, Mao X, Mao D. Effects of Ultrasonic Bending Vibration Introduced by an L-Shaped Ultrasonic Rod on the Microstructure and Properties of a 1060 Aluminum Alloy Strip Formed by Twin-Roll Casting. Materials. 2020; 13(9):2013. https://doi.org/10.3390/ma13092013
Chicago/Turabian StyleShi, Chen, Gaofeng Fan, Xuqiang Mao, and Daheng Mao. 2020. "Effects of Ultrasonic Bending Vibration Introduced by an L-Shaped Ultrasonic Rod on the Microstructure and Properties of a 1060 Aluminum Alloy Strip Formed by Twin-Roll Casting" Materials 13, no. 9: 2013. https://doi.org/10.3390/ma13092013
APA StyleShi, C., Fan, G., Mao, X., & Mao, D. (2020). Effects of Ultrasonic Bending Vibration Introduced by an L-Shaped Ultrasonic Rod on the Microstructure and Properties of a 1060 Aluminum Alloy Strip Formed by Twin-Roll Casting. Materials, 13(9), 2013. https://doi.org/10.3390/ma13092013