Progress in the Utilization of Coal Fly Ash by Conversion to Zeolites with Green Energy Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Raw Material
2.2. Synthesis and Characterization of Coal Fly Ash Zeolites
2.3. Deposition and Characterization of Fly Ash Zeolite Thin Films
2.4. Investigation of Potential Applications of FAZ
2.4.1. CO2 Adsorption
2.4.2. Catalytic Oxidation of VOCs
3. Results
3.1. Characterization of Lignite Coal Fly Ash
3.2. Coal Fly Ash Zeolites
3.3. Fly Ash Zeolite Thin Films
3.4. Adsorption Potential of FAZs for CO2 Capture
3.5. Catalytic Activity of FAZs for Total Oxidation of VOCs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferraiolo, G.; Zilli, M.; Converti, A. Fly ash disposal and utilization. J. Chem. Technol. Biotechnol. 2007, 47, 281–305. [Google Scholar] [CrossRef]
- Basu, M.; Pande, M.; Bhadoria, P.B.S.; Mahapatra, S.C. Potential fly-ash utilization in agriculture: A global review. Prog. Nat. Sci. 2009, 19, 1173–1186. [Google Scholar] [CrossRef]
- Hemalatha, T.; Ramaswamy, A. A review on fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete. J. Clean. Prod. 2017, 147, 546–559. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Chaowasakoo, T.; Sombatsompop, N. Mechanical and morphological properties of fly ash/epoxycomposites using conventional thermal and microwave curing methods. Compos. Sci. Technol. 2007, 67, 2282–2291. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, Y.H.; Ma, S.H.; Zheng, S.L.; Chu, P.K. An eco-friendly and cleaner process for preparing architectural ceramics from coal fly ash: Pre-activation of coal fly ash by a mechanochemical method. J. Clean. Prod. 2019, 214, 419–428. [Google Scholar] [CrossRef]
- Qian, B.; Hosseini, T.; Zhang, X.; Liu, Y.; Wang, H.; Zhang, L. Coal waste to two-dimensional materials: Fabrication of α-Fe2O3 nanosheets and MgO nanosheets from brown coal fly ash. ACS Sustain. Chem. Eng. 2018, 6, 15982–15987. [Google Scholar] [CrossRef]
- Xue, Y.; Yu, W.Z.; Jiang, W.Y.; Wen, L.; You, Z.X.; Lv, X.W. A novel process to extract alumina and prepare Fe-Si alloys from coal fly ash. Fuel Process. Technol. 2019, 185, 151–157. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, N.; Umaña, J.C.; Alastuey, A.; Hernández, E.; López-Soler, A.; Plana, F. Synthesis of zeolites from coal fly ash: An overview. Int. J. Coal. Geol. 2002, 50, 413–423. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, N.; Umaña, J.C.; Juan, R.; Hernández, S.; Fernandez-Pereira, C.; Ayora, C.; Janssen, M.H.M.; García-Martínez, J.; Linares-Solano, A.; et al. Application of zeolitic material synthesized from fly ash to the decontamination of waste water and flue gas. J. Chem. Technol. Biotechnol. 2002, 77, 292–298. [Google Scholar] [CrossRef]
- Boycheva, S.; Zgureva, D.; Václavíková, M.; Kalvachev, Y.; Lazarova, H.; Popova, M. Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation. J. Hazard. Mater. 2019, 361, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, Ch.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Liotta, L.F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B Environ. 2010, 100, 403–412. [Google Scholar] [CrossRef]
- Białas, A.; Kuśtrowski, P.; Dudek, B.; Piwowarska, Z.; Wach, A.; Michalik, M.; Kozak, M. Copper-aluminum oxide catalysts for total oxidation of toluene synthesized by thermal decomposition of co-precipitated precursors. Thermochim. Acta 2010, 590, 191–197. [Google Scholar] [CrossRef]
- Boycheva, S.; Zgureva, D. Surface studies of fly ash zeolites via adsorption/desorption isotherms. Bulg. Chem. Commun. 2016, 48, 101–107. [Google Scholar]
- Zgureva, D.; Boycheva, S. Experimental and model investigations of CO2 adsorption onto fly ash zeolite surface in dynamic conditions. Sustain. Chem. Pharm. 2020, 15, 100222. [Google Scholar] [CrossRef]
- Zgureva, D. Carbon dioxide adsorption studies on fly ash zeolites. Coal Combust. Gasif. Prod. 2016, 8, 54–59. [Google Scholar] [CrossRef]
- Laugel, G.; Bingre, R.; Louis, B. Zeolite and silica-based CO2 adsorbents. In Post-Combustion Carbon Dioxide Capture Materials; Wang, Q., Ed.; The Royal Society of Chemistry: CPI Group Ltd., Croydon, UK, 2019; pp. 76–152. [Google Scholar]
- Bonenfant, D.; Kharoune, M.; Niquette, P.; Mimeault, M.; Hausler, R. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 2008, 9, 1–7. [Google Scholar] [CrossRef]
- Walton, S.; Abney, M.; LeVan, M. CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Micropor. Mesopor. Mater. 2006, 91, 78–84. [Google Scholar] [CrossRef]
- Shigemoto, N.; Hayashi, H.; Miyaura, K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Mater. Sci. 1993, 28, 4781–4786. [Google Scholar] [CrossRef]
- Volli, V.; Purkait, M.K. Selective preparation of zeolite X and A from fly ash and its use as catalyst for biodiesel production. J. Hazard. Mater. 2015, 297, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Franus, W. Characterization of X-type zeolite prepared from coal fly ash. Pol. J. Environ. Stud. 2012, 21, 337–343. [Google Scholar]
- Zgureva, D.; Boycheva, S. Synthesis of highly porous micro- and nanocrystalline zeolites from aluminosilicate by-products. In Nanoscience Advances in CBRN Agents Detection, Information and Energy Security; Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 199–204. [Google Scholar]
- Mendoza, E.Y.M.; Santos, A.S.; López, E.V.; Drozd, V.; Durygin, A.; Chen, J.; Saxena, S.K. Iron oxides as efficient sorbents for CO2 capture. J. Mater. Res. Technol. 2019, 8, 2944–2956. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Yu, J. Applications of zeolites in sustainable chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.S.; Su, Ch.Y.; Lam, Ch.H.; Lee, W.Y.; Wang, Da.M.; Hua, Ch.Ch.; Kang, D.Y. Direct wet deposition of zeolite FAU thin films using stabilized colloidal suspensions. Micropor. Mesopor. Mater. 2018, 272, 286–295. [Google Scholar] [CrossRef]
- Lam, C.H.; Hsu, W.J.; Chi, H.Y.; Kang, Y.H.; Chen, J.J.; Kang, D.Y. High-throughput fabrication of zeolite thin films via ultrasonic nozzle spray deposition. Micropor. Mesopor. Mater. 2018, 267, 171–180. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, Y. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization. Chem. Mater. 2001, 13, 1101–1107. [Google Scholar] [CrossRef]
- Changjean, W.C.; Chiang, A.S.T.; Tsai, T.C. Anti-corrosion zeolite film by the dry-gel-conversion process. Thin Solid Films 2013, 529, 327–332. [Google Scholar] [CrossRef]
- Caro, J.; Noack, M.; Kölsch, P.; Schäfer, R. Zeolite membranes—State of their development and perspective. Micropor. Mesopor. Mater. 2000, 38, 3–24. [Google Scholar] [CrossRef]
- Hao, J.N.; Yan, B. Photofunctional host–guest hybrid materials and thin films of lanthanide complexes covalently linked to functionalized zeolite A. Dalton Trans. 2014, 43, 2810–2818. [Google Scholar] [CrossRef] [PubMed]
- Angelomé, P.C.; Fuertes, M.C. Metal nanoparticle–mesoporous oxide nanocomposite thin films. In Handbook of Sol-Gel Science and Technology; Klein, L., Aparicio, M., Jitianu, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 1–27. [Google Scholar]
- Lazarova, K.; Boycheva, S.; Vasileva, M.; Zgureva, D.; Georgieva, B.; Babeva, T. Zeolites from fly ash embedded in a thin niobium oxide matrix for optical and sensing applications. J. Phys. Conf. Ser. 2019, 1186, 012024. [Google Scholar] [CrossRef]
- Boycheva, S.; Zgureva, D.; Shoumkova, A. Recycling of lignite coal fly ash by its conversion into zeolite. Coal Combust. Gasif. Prod. 2015, 7, 1–8. [Google Scholar]
- Boycheva, S.; Marinov, I.; Miteva, S.; Zgureva, D. Conversion of coal fly ash into nanozeolite Na-X by applying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation. Sustain. Chem. Pharm. 2020, 15, 100217. [Google Scholar] [CrossRef]
- Murayama, N.; Yamamoto, H.; Shibata, J. Zeolite synthesis from coal fly ash by hydothermal reaction using various alkali sources. J. Chem. Technol. Biotechnol. 2020, 47, 280–286. [Google Scholar]
- Boycheva, S.; Zgureva, D.; Vassilev, V. Kinetic and thermodynamic studies on the thermal behaviour of fly ash from lignite coals. Fuel 2013, 108, 639–646. [Google Scholar] [CrossRef]
- Majchrzak-Kuceba, I. A simple thermogravimetric method for the evaluation of the degree of fly ash conversion into zeolite material. J. Porous Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Chanapattharapol, K.C.; Krachuamram, S.; Youngme, S. Study of CO2 adsorption on iron oxide doped MCM-41. Micropor. Mesopor. Mater. 2017, 245, 8–15. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, S.J. A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 2015, 23, 1–11. [Google Scholar] [CrossRef]
Components | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | CaO | Others |
---|---|---|---|---|---|---|---|
Content, wt.% | 50 ± 3 | 24 ± 1 | 12 ± 3 | 2 ± 1 | 2.25 ± 0.25 | 4.5 ± 1.5 | < 1 |
Si to Al molar ratio | 3.3–3.8 | ||||||
Density, g/cm3 | 1.9–3.1 | ||||||
Granulometry, µm | 45–250 |
Sample | Synthesis Mode * | Homoge-Nization ** | SBET, m2/g | Sextern m2/g | Vtotal, m3/g | Vmicro, m3/g | dmicro, Å | dmeso, Å | Zeolitization Extent, wt.% |
---|---|---|---|---|---|---|---|---|---|
FAZ1 | H | M | 73 | 67 | 0.11 | 0.02 | 11.03 | 50.17 | 13.35 |
FAZ2 | H | U | 280 | 87 | 0.21 | 0.08 | 13.81 | 49.98 | 51.40 |
FAZ3 | FH | U | 486 | 166 | 0.31 | 0.13 | 13.94 | 41.79 | 89.22 |
FAZ4 | FH | M | 396 | 125 | 0.26 | 0.11 | 13.75 | 44.89 | 72.65 |
FAZ5 | AA | - | 283 | 98 | 0.20 | 0.07 | 13.65 | 43.33 | 49.60 |
Cu–FAZ3 | FH | U | 67 | 47 | 0.08 | 0.009 | 12.54 | 51.02 | - |
Cu–FAZ4 | FH | M | 224 | 76 | 0.16 | 0.06 | 13.76 | 46.07 | - |
Na-X | H | M | 780 | 61 | 0.33 | 0.28 | 13.49 | 35.26 | 100.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boycheva, S.; Zgureva, D.; Lazarova, K.; Babeva, T.; Popov, C.; Lazarova, H.; Popova, M. Progress in the Utilization of Coal Fly Ash by Conversion to Zeolites with Green Energy Applications. Materials 2020, 13, 2014. https://doi.org/10.3390/ma13092014
Boycheva S, Zgureva D, Lazarova K, Babeva T, Popov C, Lazarova H, Popova M. Progress in the Utilization of Coal Fly Ash by Conversion to Zeolites with Green Energy Applications. Materials. 2020; 13(9):2014. https://doi.org/10.3390/ma13092014
Chicago/Turabian StyleBoycheva, Silviya, Denitza Zgureva, Katerina Lazarova, Tsvetanka Babeva, Cyril Popov, Hristina Lazarova, and Margarita Popova. 2020. "Progress in the Utilization of Coal Fly Ash by Conversion to Zeolites with Green Energy Applications" Materials 13, no. 9: 2014. https://doi.org/10.3390/ma13092014
APA StyleBoycheva, S., Zgureva, D., Lazarova, K., Babeva, T., Popov, C., Lazarova, H., & Popova, M. (2020). Progress in the Utilization of Coal Fly Ash by Conversion to Zeolites with Green Energy Applications. Materials, 13(9), 2014. https://doi.org/10.3390/ma13092014