Mean-Subtraction Method for De-Shadowing of Tail Artifacts in Cerebral OCTA Images: A Proof of Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model
2.2. System Setup
2.3. OCT Angiography (OCTA)
2.4. Tail Artifact Removal by Mean Subtraction
2.5. Comparison with an Existing Method
3. Results and Discussion
3.1. Optimization of Mean-Subtraction Method Parameters for De-Shadowing of OCTA Images
3.2. Mean-Subtraction Eliminates Artifacts Compared to Step-Down Exponential Filtering Method
3.3. Mean-Subtraction Method Performance on Cortical Microvasculature in En face OCTA Images
3.4. Limitations and Implications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grenga, P.L.; Fragiotta, S.; Cutini, A.; Meduri, A.; Vingolo, E.M. Enhanced depth imaging optical coherence tomography in adult-onset forveomacular vitelliform dystrophy. Eur. J. Ophthalmol. 2016, 26, 145. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Brown, W.; Maher, J.R.; Levinson, H.; Wax, A. Functional optical coherence tomography: Principles and progress. Phys. Med. Biol. 2015, 60, R211. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Wang, R.K. Optical coherence tomography based angiography [Invited]. Biomed. Opt. Express 2017, 8, 1056. [Google Scholar] [CrossRef] [Green Version]
- Mariampillai, A.; Standish, B.A.; Moriyama, E.H.; Khurana, M.; Munce, N.R.; Leung, M.K.K.; Jiang, J.; Cable, A.; Wilson, B.C.; Vitkin, I.A.; et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 2008, 33, 1530. [Google Scholar] [CrossRef] [Green Version]
- Enfield, J.; Jonathan, E.; Leahy, M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT). Biomed. Opt. Express 2011, 2, 1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Tokayer, J.; Potsaid, B.; Wang, Y.; Liu, J.J.; Kraus, M.F.; Subhash, H.; Fujimoto, J.G.; Hornegger, J.; Huang, D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 2012, 20, 4710. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, D.M.; Fingler, J.; Kim, D.Y.; Zawadzki, R.J.; Morse, L.S.; Park, S.S.; Fraser, S.E.; Werner, J.S. Phase-variance optical coherence tomography: A technique for noninvasive angiography. Ophthalmology 2014, 121, 180. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Song, S.; Li, Y.; Wang, R.K. Complex-based OCT angiography recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems. Phys. Med. Biol. 2017, 63, 015023. [Google Scholar] [CrossRef]
- Matsunaga, D.; Yi, J.; Olmos, L.C.; Legarreta, J.; Legarreta, A.D.; Gregori, G.; Sharma, U.; Rosenfeld, P.J.; Puliafito, C.A.; Kashani, A.H. OCT angiography (OCTA) of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2015, 56, 3335. [Google Scholar]
- Chalam, K.V.; Sambhav, K. Optical coherence tomography angiography in retinal diseases. J. Ophthalmic Vis. Res. 2016, 11, 84. [Google Scholar] [CrossRef]
- Chen, Z.; Rank, E.; Meiburger, K.M.; Sinz, C.; Hodul, A.; Zhang, E.; Hoover, E.; Minneman, M.; Ensher, J.; Beard, P.C.; et al. Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging. Sci. Rep. 2017, 7, 17975. [Google Scholar] [CrossRef] [PubMed]
- Meiburger, K.M.; Chen, Z.; Sinz, C.; Hoover, E.; Minneman, M.; Ensher, J.; Kittler, H.; Leitgeb, R.A.; Drexler, W.; Liu, M. Automatic skin lesion area determination of basal cell carcinoma using optical coherence tomography angiography and a skeletonization approach: Preliminary results. J. Biophotonics 2019, 12, e201900131. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Li, Y.; Wang, R.K. Monitoring acute stroke progression: Multi-parametric OCT imaging of cortical perfusion, flow, and tissue scattering in a mouse model of permanent focal ischemia. IEEE Trans. Med. Imaging 2019, 38, 1427. [Google Scholar] [CrossRef] [PubMed]
- Baran, U.; Wang, R.K. Review of optical coherence tomography based angiography in neuroscience. J. Biomed. Opt. 2016, 3, 010902. [Google Scholar] [CrossRef] [Green Version]
- Katta, N.; Estrada, A.D.; McElroy, A.B.; Gruslova, A.; Oglesby, M.; Cable, A.G.; Feldman, M.D.; Fleming, R.D.; Brenner, A.J.; Milner, T.E. Laser brain cancer surgery in a xenograft model guided by optical coherence tomography. Theranostics 2019, 9, 3555. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, Q.; Wang, R.K. Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. Biomed. Opt. Express 2015, 6, 4130. [Google Scholar] [CrossRef] [Green Version]
- Leahy, C.; Radhakrishnan, H.; Bernucci, M.; Srinivasan, V.J. Imaging and graphing of cortical vasculature using dynamically focused optical coherence microscopy angiography. J. Biomed. Opt. 2016, 21, 020502. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Zhang, Q.; Park, K.; Du, C.; Pan, Y. Quantitative imaging of microvascular blood flow networks in deep cortical layers by 1310 nm µODT. Opt. Lett. 2015, 40, 4293. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Cadotte, D.W.; Vuong, B.; Sun, C.; Luk, T.W.H.; Mariampillai, A.; Yang, V.X.D. Review of speckle and phase variance optical coherence tomography to visualize microvascular networks. J. Biomed. Opt. 2013, 18, 050901. [Google Scholar] [CrossRef] [Green Version]
- Mariampillai, A. Development of a High-Resolution Microvascular Imaging Toolkit for Optical Coherence Tomography. Ph.D. Thesis, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada, 2011. [Google Scholar]
- Liu, L.; Gao, S.S.; Bailey, S.T.; Huang, D.; Li, D.; Jia, Y. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomed. Opt. Express 2015, 6, 3564. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Hwang, T.S.; Campbell, P.; Bailey, S.T.; Wilson, D.J.; Huang, D.; Jia, Y. Projection-resolved optical coherence tomography angiography. Biomed. Opt. Express 2016, 7, 816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baran, U.; Choi, W.J.; Li, Y.; Wang, R.K. Tail artifact removal in OCT angiography images of rodent cortex. J. Biophotonics 2017, 10, 1421. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Baran, U.; Wang, R.K. Application of thinned-skull cranial window to mouse cerebral blood flow imaging using optical microangiography. PLoS ONE 2014, 9, e113658. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Zhi, Z.; Wang, R.K. Eigendecomposition-based clutter filtering technique for optical microangiography. IEEE Trans. Biomed. Eng. 2011, 58, 2316. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Erdener, S.E.; Sunil, S.; Boas, D.A. Normalized field autocorrelation function-based optical coherence tomography three-dimensional angiography. J. Biomed. Opt. 2019, 24, 036005. [Google Scholar] [CrossRef] [Green Version]
- Pablo, B.; Tsai, P.S.; Kaufhold, J.P.; Knutsen, P.M.; Suhl, H.; Kleinfeld, D. The cortical angiome: An interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 2013, 16, 889. [Google Scholar]
- Li, Y.; Choi, W.J.; Wei, W.; Song, S.; Zhang, Q.; Liu, J.; Wang, R.K. Aging-related changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiol. Aging 2018, 70, 148. [Google Scholar] [CrossRef]
- Xu, K.; Lamanna, J.C. Chronic hypoxia and the cerebral circulation. J. Appl. Physiol. 1985, 100, 725. [Google Scholar] [CrossRef]
- Sokolova, I.A.; Manukhina, E.B.; Blinkov, S.M.; Koshelev, V.B.; Pinelis, V.G.; Rodionov, I.M. Rarefication of the arterioles and capillary network in the brain of rats with different forms of hypertension. Microvasc. Res. 1985, 30, 1. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.J.; Paulson, B.; Yu, S.; Wang, R.K.; Kim, J.K. Mean-Subtraction Method for De-Shadowing of Tail Artifacts in Cerebral OCTA Images: A Proof of Concept. Materials 2020, 13, 2024. https://doi.org/10.3390/ma13092024
Choi WJ, Paulson B, Yu S, Wang RK, Kim JK. Mean-Subtraction Method for De-Shadowing of Tail Artifacts in Cerebral OCTA Images: A Proof of Concept. Materials. 2020; 13(9):2024. https://doi.org/10.3390/ma13092024
Chicago/Turabian StyleChoi, Woo June, Bjorn Paulson, Sungwook Yu, Ruikang K. Wang, and Jun Ki Kim. 2020. "Mean-Subtraction Method for De-Shadowing of Tail Artifacts in Cerebral OCTA Images: A Proof of Concept" Materials 13, no. 9: 2024. https://doi.org/10.3390/ma13092024
APA StyleChoi, W. J., Paulson, B., Yu, S., Wang, R. K., & Kim, J. K. (2020). Mean-Subtraction Method for De-Shadowing of Tail Artifacts in Cerebral OCTA Images: A Proof of Concept. Materials, 13(9), 2024. https://doi.org/10.3390/ma13092024