Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Observation of the Severe Plastic Deformation Layer
3.2. EBSD Analysis
3.3. Micro Vickers Hardness Distrubution
3.4. Residual Stress
3.5. Tensile Properties
3.6. Fatigue Characteristics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brānemark, P.I.; Adell, R.; Breine, U.; Hansson, B.O.; Lindström, J.; Ohlsson, A. Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scand. J. Plast. Reconstr. Surg. 1969, 3, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.T.; Zhang, M.-H.; Tian, Y.-X.; Cheng, J.; Ma, X.-Q.; Liu, H.-Y.; Wang, C. Designation & development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants. Front. Mater. Sci. 2014, 8, 219–229. [Google Scholar]
- Eylon, D.; Vassel, A.; Combres, Y.; Boyer, R.R.; Bania, P.J.; Schutz, R.W. Issues in the development of beta titanium alloys. JOM 1994, 46, 14–15. [Google Scholar] [CrossRef]
- Wang, T.T.; Zeng, L.G.; Li, Z.J. Influences of Laser Surface Alloying with Cr on Microstructural Characteristics and Hardness of Pure Ti. Metall. Mater. Trans. A 2019, 50, 3794–3804. [Google Scholar] [CrossRef]
- Cao, X.J.; Xu, L.P.; Xu, X.L.; Wang, Q.Y. Fatigue fracture characteristics of Ti6Al4V subjected to ultrasonic nanocrystal surface modification. Metals 2018, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Hamad, T.I.; Fatalla, A.A.; Waheed, A.S.; Azzawi, Z.G.M.; Cao, Y.-G.; Song, K. Biomechanical Evaluation of Nano-Zirconia Coatings on Ti-6Al-7Nb Implant Screws in Rabbit Tibias. Curr. Med. Sci. 2018, 38, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.B.; Yuan, T.C.; Li, R.D.; Tang, J.Z.; Wang, M.B.; Mei, F.S. Anisotropic mechanical behavior of biomedical Ti-13Nb-13Zr alloy manufactured by selective laser melting. J. Alloy. Compd. 2018, 762, 289–300. [Google Scholar] [CrossRef]
- Im, Y.D.; Lee, Y.K.; Song, K.H. Effect of Grain Misorientation Angle on Twinning Propagation in Ti–15Mo Alloy. Met. Mater. Int. 2018, 24, 913–917. [Google Scholar] [CrossRef]
- Yang, X.Y.; Hutchinson, C.R. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Acta Biomater. 2016, 42, 429–439. [Google Scholar] [CrossRef]
- Liu, X.H.; Wu, L.; Ai, H.J.; Han, Y.; Hu, Y. Cytocompatibility and early osseointegration of nanoTiO2-modified Ti-24 Nb-4 Zr-7.9 Sn surfaces. Mat. Sci. Eng. C 2015, 48, 256–262. [Google Scholar] [CrossRef]
- Bloyce, A.; Morton, P.; Bell, T. ASM Handbook; ASM International: Materials Park, OH, USA, 1994; Volume 5. [Google Scholar]
- Maawad, E.; Sano, Y.; Wagner, L.; Brokmeier, H.G.; Genzel, C. Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys. Mater. Sci. Eng. A 2012, 536, 82–91. [Google Scholar] [CrossRef]
- Benafia, S.; Retraint, D.; Brou, S.Y.; Panicaud, B.; Grosseau Poussard, J.L. Influence of Surface Mechanical Attrition Treatment on the oxidation behaviour of 316L stainless steel. Corros. Sci. 2018, 136, 188–200. [Google Scholar] [CrossRef]
- Zhu, L.H.; Guan, Y.J.; Lin, J.; Zhai, J.Q.; Xie, Z.D. A nanocrystalline-amorphous mixed layer obtained by ultrasonic shot peening on pure titanium at room temperature. Ultrason. Sonochem. 2018, 47, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.X.; Zhou, X.F.; Gao, H.Y.; Mankoci, S.; Liu, Y.; Sang, X.H.; Qin, H.F.; Hou, X.N.; Ren, Z.C.; Doll, G.L.; et al. The effects of laser shock peening on the mechanical properties and biomedical behavior of AZ31B magnesium alloy. Surf. Coat. Technol. 2018, 339, 48–56. [Google Scholar] [CrossRef]
- Ao, N.; Liu, D.X.; Xu, X.; Liu, D. Gradient nanostructure evolution and phase transformation of α phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process. Surf. Coat. Technol. 2019, 742, 820–834. [Google Scholar] [CrossRef]
- Kherandmandfard, M.; Kashani-Bozorg, S.F.; Lee, J.S.; Kim, C.L.; Hanzaki, A.Z.; Pyun, Y.-S.; Pyun, S.-W.; Amanov, A.; Kim, D.-E. Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal surface modification. J. Alloy Compd. 2018, 762, 941–949. [Google Scholar] [CrossRef]
- She, D.; Yue, W.; Fu, Z.; Gu, Y.; Wang, C.; Liu, J. The effect of nitriding temperature on hardness and microstructure of die steel pre-treated by ultrasonic cold forging technology. Mater. Des. 2013, 49, 392–399. [Google Scholar] [CrossRef]
- Lu, K.; Lu, J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 2004, 375, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Ao, N.; Liu, D.X.; Zhang, X.H.; Liu, C.G. Enhanced fatigue performance of modified plasma electrolytic oxidation coated Ti-6Al-4V alloy: Effect of residual stress and gradient nanostructure. Appl. Surf. Sci. 2019, 489, 595–607. [Google Scholar] [CrossRef]
- Pyun, Y.; Park, J.; Kim, C. Compiler. U.S. Patent 8782902B2, 4 February 2010. [Google Scholar]
- Hu, J.; Shi, Y.; Savage, X.; Sha, G.; Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017, 355, 1292–1296. [Google Scholar] [CrossRef]
- Amanov, A.; Karimbaev, R.; Maleki, E.; Unal, O.; Pyun, Y.-S.; Amanov, T. Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304. Surf. Coat. Technol. 2019, 358, 695–705. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Vassel, A.; Brisset, F.; Lu, K.; Lu, J. Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater. 2004, 52, 4101–4110. [Google Scholar] [CrossRef]
- Chen, G.Q.; Jiao, Y.; Tian, T.Y.; Zhang, X.-H.; Li, Z.-Q.; Zhou, W.-L. Effect of wet shot peening on Ti-6Al-4V alloy treated by ceramic beads. Trans. Nonferrous Met. Soc. China 2014, 24, 690–696. [Google Scholar] [CrossRef]
- Nie, X.F.; He, W.F.; Zhou, L.C.; Li, Q.P.; Wang, X.D. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance. Mater. Sci. Eng. A 2014, 594, 161–167. [Google Scholar] [CrossRef]
- Kattoura, M.; Telang, A.; Mannava, S.R.; Qian, D.; Vasudevan, V.K. Effect of ultrasonic nanocrystal surface modification on residual stress, microstructure and fatigue behavior of ATI 718plus alloy. Mater. Sci. Eng. A 2018, 711, 364–377. [Google Scholar] [CrossRef]
- Sonntag, R.; Reinders, J.; Gibmeier, J.; Kretzer, J.P. Fatigue performance of medical Ti6Al4V alloy after mechanical surface treatments. PLoS ONE 2015, 10, e0121963. [Google Scholar] [CrossRef] [Green Version]
- Suh, C.M.; Yoon, S.M.; Jang, J.H.; Suh, M.S.; Pyoun, Y.S.; Sakai, T. Very high cycle fatigue characteristics of SCM435 under load variation by ultrasonic nanocrystal surface modification treatment. Korean Soc. Mech. Eng. 2009, 11, 66–71. [Google Scholar]
- Shen, T.D.; Koch, C.C.; Tsui, T.Y.; Pharr, G.M. On the Elastic Modulus of Nanocrystalline Cu, Ni and Their Alloys Prepared by Mechanical Milling/Alloying. J. Mater. Res. 1995, 10, 2892–2896. [Google Scholar] [CrossRef]
- Yasuoka, M.; Wang, P.; Zhang, K.; Qiu, Z.; Kusaka, K.; Pyoun, Y.S.; Murakami, R.I. Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification. Surf. Coat. Technol. 2013, 218, 93–98. [Google Scholar] [CrossRef]
- Cao, X.J.; Murakam, R.; Pyoun, Y.S. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification. Appl. Surf. Sci. 2010, 256, 6297–6303. [Google Scholar] [CrossRef]
- Amanov, A.; Pyun, Y.; Ssdski, S. Effects of ultrasonic nanocrystalline surface modification (UNSM) technique on the tribological behavior of sintered Cu-based alloy. Tribol. Int. 2014, 72, 187–197. [Google Scholar] [CrossRef]
- Lee, C.; Murakami, R.; Suh, C. Fatigue properties of aluminum alloy (A6061-T6) with ultrasonic nano-crystal surface modification. Int. J. Mod. Phys. B 2010, 24, 2512–2517. [Google Scholar] [CrossRef]
- Cao, X.J.; Wu, C.J.; Gu, Z.Y.; Chen, Q.; Fukushima, Y.; Liu, Y.J.; Wang, Q.Y. Research status and progress on ultrasonic impact nanocrystallization. Surf. Technol. 2019, 48, 113–121. [Google Scholar]
- Murakami, Y. Metal Fatigue: Influence of Micro Defect and Inclusion; Yokenndo: Tokyo, Japan, 1993. (In Japanese) [Google Scholar]
Material | σ0.2 (MPa) | σb (MPa) | δ (%) | Ψ (%) | Elastic Modulus (GPa) |
---|---|---|---|---|---|
Pure Ti [4] | 170–485 | 240–550 | 15–24 | 25–30 | ≈103 |
Ti6Al4V(annealed) [5] | 820–870 | 900–930 | 6–10 | 20–25 | 110–114 |
Ti6Al7Nb [6] | 880–950 | 900–1050 | 8–15 | 25–45 | 114 |
Ti13Nb13Zr(aged) [7] | 830–910 | 970–1040 | 10–16 | 27–53 | 79–84 |
Ti15Mo(annealed) [8] | 511 | 874 | 21 | 82 | 78 |
Ti12Mo6Zr2Fe(annealed) [9] | 1000–1060 | 1060–1100 | 18–22 | 64–73 | 74–85 |
TLM(aged) | 610–950 | 685–1050 | 17–23 | 70–71 | 45–81 |
Ti24Nb4Zr7.9Sn(aged) [10] | 800–1100 | 850–1150 | 15 | —— | 42–82 |
Heat Treatment | σ0.2/MPa | σb/MPa | Elongation/% | Reduction of Area/% |
---|---|---|---|---|
Solution and aging | 567 | 721 | 19.5 | 71 |
Processing Method | Untreated | UI-24000 | UI-36000 | UI-48000 |
---|---|---|---|---|
Residual stress (MPa) | +12.05 | −247.84 | −273.60 | −288.52 |
Material | Heat Treatment | Yield Strength σ0.2 (MPa) | Tensile Strength σb (MPa) | Fatigue Limit at 107 Cycles (MPa) | |
---|---|---|---|---|---|
Before | After | ||||
S45C [32] | Annealed | 490 | 690 | 300 | 400 |
SUS304 [31] | Hot rolling | 205 | 520 | 280 | 520 |
SCM435 [29] | 770 °C × 3 h + 680 °C × 10 h | 836 | 991 | 500 | 650 |
ATI 718 plus alloy [27] | 788 °C × 8 h + 704 °C × 8 h | 1200 | - | 740 | 850 |
Inconel 718 alloy [33] | Annealed 954 °C × 30 m | 829 | 1117 | - | ≈700 |
A6061 [34] | T6 | 276 | 310 | 130 | 180 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Z.; Cao, X.; Xu, X.; Shen, Q.; Yu, T.; Jin, J. Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb. Materials 2020, 13, 2107. https://doi.org/10.3390/ma13092107
Cheng Z, Cao X, Xu X, Shen Q, Yu T, Jin J. Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb. Materials. 2020; 13(9):2107. https://doi.org/10.3390/ma13092107
Chicago/Turabian StyleCheng, Zhangjianing, Xiaojian Cao, Xiaoli Xu, Qiangru Shen, Tianchong Yu, and Jiang Jin. 2020. "Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb" Materials 13, no. 9: 2107. https://doi.org/10.3390/ma13092107
APA StyleCheng, Z., Cao, X., Xu, X., Shen, Q., Yu, T., & Jin, J. (2020). Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb. Materials, 13(9), 2107. https://doi.org/10.3390/ma13092107