Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Experimental Procedures
2.3. Characterization
3. Results and Discussion
3.1. Structure Characterization
3.2. Morphology Analysis
3.3. Magnetic Analysis and Microwave Absorption Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Huang, Y.; Chen, H.H.; Huang, Z.Y.; Yang, Y.; Xiao, P.S.; Zhou, Y.; Chen, Y.S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447. [Google Scholar] [CrossRef]
- Ding, D.; Wang, Y.; Li, X.D.; Qiang, R.; Xu, P.; Chu, W.L.; Han, X.J.; Du, Y.C. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 2017, 111, 722–732. [Google Scholar] [CrossRef]
- Shen, Y.Q.; Wei, Y.P.; Li, J.; Li, Q.L.; Ma, J.Q.; Wang, P.B.; Li, B.; He, W.B.; Du, X.Y. Preparation of microwave absorbing Co-C nanofibers with robust superhydrophobic properties by electrospinning. J. Mater. Sci. Mater. Electron. 2019, 30, 3365–3377. [Google Scholar] [CrossRef]
- Matzui, L.Y.; Trukhanov, A.V.; Yakovenko, O.S.; Vovchenko, L.L.; Zagorodnii, V.V.; Oliynyk, V.V.; Borovoy, M.O.; Trukhanova, E.L.; Astapovich, K.A.; Karpinsky., D.V.; et al. Functional Magnetic Composites Based on Hexaferrites: Correlation of the Composition, Magnetic and High-Frequency Properties. Nanomaterials 2019, 9, 1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.Q.; Wei, Y.P.; Ma, J.Q.; Zhang, Y.C.; Ji, B.H.; Tang, J.; Zhang, L.Y.; Yan, P.Z.; Du, X.Y. Self-cleaning functionalized FeNi/NiFe2O4/NiO/C nanofibers with enhanced microwave absorption performance. Ceram. Int. 2020. [Google Scholar] [CrossRef]
- Shen, Y.Q.; Wei, Y.P.; Li, J.; Zhang, Y.C.; Li, B.; Lu, X.F.; Ji, B.H.; Yan, P.Z.; Du, X.Y. Fabrication of microwave absorbing Ni/NiO/C nanofibers with robust superhydrophobic properties by electrospinning. J. Mater. Sci. Mater. Electron. 2019, 31, 226–238. [Google Scholar] [CrossRef]
- Liu, T.S.; Liu, N.; Zhai, S.R.; Gao, S.S.; Xiao, Z.Y.; An, Q.D.; Yang, D.J. Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance. J. Alloys Compd. 2019, 779, 831–843. [Google Scholar] [CrossRef]
- Meng, X.; Liu, Y.Q.; Han, G.H.; Yang, W.W.; Yu, Y.S. Three-dimensional (Fe3O4/ZnO)@C Double-core@shell porous nanocomposites with enhanced broadband microwave absorption. Carbon 2020, 162, 356–364. [Google Scholar] [CrossRef]
- Deng, Z.H.; He, S.R.; Wang, W.; Xu, M.Z.; Zheng, H.Y.; Yan, J.F.; Zhang, W.X.; Yun, J.N.; Zhao, W.; Gan, P.Y. Construction of hierarchical SnO2@Fe3O4 nanostructures for efficient microwave absorption. J. Magn. Magn. Mater. 2020, 498, 166224. [Google Scholar] [CrossRef]
- Qiao, M.T.; Lei, X.F.; Ma, Y.; Tian, L.D.; Wang, W.B.; Su, K.H.; Zhang, Q.Y. Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature. J. Alloys Compd. 2017, 693, 432–439. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Trukhanow, A.V.; Slimani, Y.; You, K.Y.; Trukhanov, S.V.; Trukhanova, E.L.; Esa, F. Correlation Between Composition and Electrodynamics Properties in Nanocomposites Based on Hard/Soft Ferrimagnetics with Strong Exchange Coupling. Nanomaterials 2019, 9, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.L.; Yin, X.W.; Zhu, M.; Han, M.K.; Hou, Z.X.; Li, X.L.; Zhang, L.T.; Cheng, L.F. Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption. ACS Appl. Mater. Interfaces 2017, 9, 6332–6341. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.Y.; Chen, M.; Zhang, Y.Y.; Xu, X.Q.; Li, G.Z.; Du, X.Y. Influence of Temperature Control System on the Crystallization Behavior of Magnetite Phases in Nickel Slags. Steel Res. Int. 2018, 89, 1700300. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, G.L.; Zhu, D.Q.; Zhou, X.L. Utilization of nickel slag using selective reduction followed by magnetic separation. Trans. Nonferrous Met. Soc. China 2013, 23, 3421–3427. [Google Scholar] [CrossRef]
- Ma, Y.B.; Du, X.Y.; Shen, Y.Y.; Li, G.Z.; Li, M. Crystallization and Beneficiation of Magnetite for Iron Recycling from Nickel Slags by Oxidation-Magnetic Separation. Metals 2017, 7, 321. [Google Scholar] [CrossRef] [Green Version]
- Shoya, M.; Aba, M.; Tsukinaga, Y.; Tokuhashi, K. Frost resistance and air void system of self-compacting concrete incorporating slag as a fine aggregate. Aci Spec. Publ. 2003, 213, 1093–1108. [Google Scholar]
- Li, Y.J.; Papangelakis, V.G.; Perederiy, I. High pressure oxidative acid leaching of nickel smelter slag: Characterization of feed and residue. Hydrometallurgy 2009, 97, 185–193. [Google Scholar] [CrossRef]
- Gueye, P.G.B.; López-Sánchez, J.; Navarro, E.; Serrano, A.; Marín, P. Control of the length of Fe73.5Si13.5Nb3Cu1B9 microwires to be used for magnetic and microwave absorbing purposes. ACS Appl. Mater. Interfaces 2020, 12, 15644–15656. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, Y.; Jiang, J.T.; Gong, Y.X.; Zhen, L. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process. J. Magn. Magn. Mater. 2015, 395, 152–158. [Google Scholar] [CrossRef]
- Duan, Y.P.; Gu, S.C.; Zhang, Z.L.; Wen, M. Characterization of structures and novel magnetic response of Fe87.5Si7Al5.5 alloy processed by ball milling. J. Alloys Compd. 2012, 542, 90–96. [Google Scholar] [CrossRef]
- Wang, X.; Gong, R.Z.; Li, P.G.; Liu, L.Y.; Cheng, W.M. Effects of aspect ratio and particle size on the microwave properties of Fe–Cr–Si–Al alloy flakes. Mater. Sci. Eng. A 2007, 466, 178–182. [Google Scholar] [CrossRef]
- Rawers, J.; Slavens, G. Strengthening Characteristics of Nitrogen-Alloyed 201 Stainless Steel. J. Mater. Synth. Process. 1995, 4, 697–708. [Google Scholar]
- Vives, S.; Gaffet, E.; Meunier, C. X-ray diffraction line profile analysis of iron ball milled powders. Mater. Sci. Eng. A 2004, 366, 229–238. [Google Scholar] [CrossRef]
- Wang, H.T.; Wang, W.; Gui, M.X.; Asif, M.; Wang, Z.Y.; Yu, Y.; Xiao, J.W.; Liu, H.F. Uniform Fe3O4/Nitrogen-Doped Mesoporous Carbon Spheres Derived from Ferric Citrate-Bonded Melamine Resin as an Efficient Synergistic Catalyst for Oxygen Reduction. ACS Appl. Mater. Interfaces 2017, 9, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.L.; Ye, X.; Dang, B.K.; Ye, Z.N.; Jin, C.D.; Sun, Q.F.; Yu, X.H. In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties. Mater. Des. 2019, 182, 108006. [Google Scholar] [CrossRef]
- Safronov, A.P.; Beketov, I.V.; Komogortsev, S.V.; Kurlyandskaya, G.V.; Medvedev, A.I.; Leiman, D.V.; Larrañaga, A. Spherical magnetic nanoparticles fabricated by laser target evaporation. Aip Adv. 2013, 3, 052135. [Google Scholar] [CrossRef] [Green Version]
- Kozlovskiya, A.; Kenzhina, I.; Zdorovetsa, M. Synthesis, phase composition and magnetic properties of double perovskites of A(FeM)O4-x type (A = Ce; M = Ti). Ceram. Int. 2019, 45, 8669–8676. [Google Scholar] [CrossRef]
- Gong, Y.X.; Zhen, L.; Jiang, J.T.; Xu, C.Y.; Shao, W.Z. Synthesis and microwave electromagnetic properties of CoFe alloy nanoflakes prepared with hydrogen-thermal reduction method. J. Appl. Phys. 2009, 106, 064302. [Google Scholar] [CrossRef]
- Zeng, Q.; Baker, I.; McCreary, V.; Yan, Z.C. Soft ferromagnetism in nanostructured mechanical alloying FeCo-based powders. J. Magn. Magn. Mater. 2007, 318, 28–38. [Google Scholar] [CrossRef]
- Wang, A.M.; Wang, W.; Long, C.; Li, W.; Guan, J.G.; Gu, H.S.; Xu, G.X. Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes. J. Mater. Chem. C 2014, 2, 3769–3776. [Google Scholar] [CrossRef]
- Liu, X.G.; Geng, D.Y.; Meng, H.; Shang, P.J.; Zhang, Z.D. Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl. Phys. Lett. 2008, 92, 173117. [Google Scholar] [CrossRef]
- Gong, Y.X.; Zhen, L.; Jiang, J.T.; Xu, C.Y.; Shao, W.Z. Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance. J. Magn. Magn. Mater. 2009, 321, 3702–3705. [Google Scholar] [CrossRef]
- Wu, G.L.; Cheng, Y.H.; Yang, Z.H.; Jia, Z.R.; Wu, H.J.; Yang, L.J.; Li, H.L.; Guo, P.Z.; Lv, H.L. Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 2018, 333, 519–528. [Google Scholar] [CrossRef]
- Jiang, J.J.; Li, D.; Geng, D.Y.; An, J.i.; He, J.; Liu, W.; Zhang, Z.D. Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 2014, 6, 3967–3971. [Google Scholar] [CrossRef]
- Du, Y.C.; Liu, W.W.; Qiang, R.; Wang, Y.; Han, X.J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Zeng, X.; Cui, T.T.; Zhao, Y.T.; Li, Y.N.; Tong, G.X. Facile Hydrothermal Synthesis of Fe3O4/C Core-Shell Nanorings for Efficient Low-Frequency Microwave Absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380. [Google Scholar] [CrossRef]
- Aharoni, A. Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 1991, 69, 7762–7764. [Google Scholar] [CrossRef]
- Sun, G.B.; Dong, B.X.; Cao, M.H.; Wei, B.Q.; Hu, C.W. Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, γ-Fe2O3, and Fe with High Performance of Microwave Absorption. Chem. Mater. 2011, 23, 1587–1593. [Google Scholar] [CrossRef]
- Shen, Y.Q.; Wei, Y.P.; Ma, J.Q.; Li, Q.L.; Li, J.; Shao, W.J.; Yan, P.Z.; Huang, G.W.; Du, X.Y. Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning. Ceram. Int. 2019, 45, 3313–3324. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, H.Q.; Yang, Z.H.; Lv, J.; Cao, J.M.; Qi, X.D.; Ji, G.B.; Du, Y.W. An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption. J. Alloys Compd. 2018, 762, 463–472. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.; Ji, G.B.; Quan, B.; Liang, X.H.; Zhao, Z.X.; Cao, J.M.; Du, Y.W. Magnetic and electromagnetic properties of Fe3O4 /Fe composites prepared by a simple one-step ball-milling. J. Alloys Compd. 2017, 708, 587–593. [Google Scholar] [CrossRef]
- Fang, G.; Liu, C.Y.; Yang, Y.; Lin, Y.J.; Xu, M.J. Enhanced microwave absorption performance of Fe3O4/Cu composites with coexistence of nanospheres and nanorods. J. Alloys Compd. 2020, 817, 152764. [Google Scholar] [CrossRef]
- Wang, Y.P.; Sun, D.P.; Liu, G.Z.; Jiang, W. Synthesis of Fe3O4@SiO2@ZnO core–shell structured microspheres and microwave absorption properties. Adv. Powder Technol. 2015, 26, 1537–1543. [Google Scholar] [CrossRef]
Component | Fe | Ca | Mg | Si | Ni | Co | Cu | S | Others |
---|---|---|---|---|---|---|---|---|---|
Content | 36.22 | 3.75 | 8.94 | 14.28 | 0.65 | 0.12 | 0.27 | 0.63 | 11.49 |
Samples | Average Grain Size (nm) | Internal Strain (%) |
---|---|---|
M0 | 155.7 | 0.098 |
M1 | 137.4 | 0.148 |
M2 | 101.1 | 0.162 |
M3 | 54.4 | 0.292 |
Fe | Si | Mg | Ca | O | Cu | Ni | Co | Al | |
---|---|---|---|---|---|---|---|---|---|
1 | 5.53 | 26.02 | 7.56 | 5.65 | 53.3 | 0 | 0 | 0 | 1.94 |
2 | 62.82 | 0 | 3.11 | 0 | 30.82 | 0.73 | 1.54 | 0.44 | 0.54 |
Samples | M1 | M2 | M3 |
---|---|---|---|
Electrical resistivity (kΩ·cm) | 9.63 | 6.245 | 7.71 |
Sample | Absorber and Content | Reflection Loss | Effective Frequency Bandwidth | Ref. |
---|---|---|---|---|
1 | Fe3O4/Fe | −25.9 dB | 4.2 GHz | [41] |
2 | Fe3O4/C | −20.6 dB | 4.7 GHz | [35] |
3 | Fe87.5Si7Al5.5 | −22.2 dB | 6.6 GHz | [20] |
4 | Fe3O4@MnO2 | −42.6 dB | 6.6 GHz | [10] |
5 | Fe3O4/Cu | −53.4 dB | 5.84 GHz | [42] |
6 | (Fe3O4/ZnO)@C | −40.0 dB | 6.5 GHz | [8] |
7 | Fe3O4@SiO2@PPy | −40.9 dB | 6.88 GHz | [7] |
8 | Fe3O4@SiO2@ZnO | −24.4 dB | 8.86 GHz | [43] |
9 | Fe3O4/Silicates | −34.0 dB | 2.3 GHz | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Shen, Y.; Du, X.; Chong, J. Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag. Materials 2020, 13, 2162. https://doi.org/10.3390/ma13092162
Yan P, Shen Y, Du X, Chong J. Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag. Materials. 2020; 13(9):2162. https://doi.org/10.3390/ma13092162
Chicago/Turabian StyleYan, Pengze, Yongqian Shen, Xueyan Du, and Junkai Chong. 2020. "Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag" Materials 13, no. 9: 2162. https://doi.org/10.3390/ma13092162
APA StyleYan, P., Shen, Y., Du, X., & Chong, J. (2020). Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag. Materials, 13(9), 2162. https://doi.org/10.3390/ma13092162