Acoustic Emission Characteristics and Change the Transformation Entropy after Stress-Induced Martensite Stabilization in Shape Memory Ni53Mn25Ga22 Single Crystal
Abstract
:1. Introduction
2. Experimental Procedures
3. Results
4. Discussion
- (i)
- (ii)
- The energy distributions of the acoustic hits showed nice power law behaviour and the energy exponents were different for heating and cooling; this asymmetry had different signs for the as grown and SIM-aged samples.
5. Conclusions
- The forward (from austenite to martensite) and reverse transitions became sharper, and the width of the hysteresis increased in the SIM-aged sample. On the other hand, in spite of the expectations, the SIM-aging did not cause a shift of transformation temperatures to higher values.
- The transformation entropy is smaller for the SIM-aged sample. Taking into account that it decreased only by about 36%, the increase of the area of the hysteresis loop by about a factor of 3 cannot be attributed solely to the entropy change (ΔT, the width of the hysteresis, is inversely proportional to −Δs).
- The energy distributions of acoustic emission hits showed power law behavior. The SIM-aging changed the sign of the asymmetry of the power exponents characterising the energy distributions: the relative change was positive (11%) for the as grown sample, and its value was negative (−11%) after SIM-aging. This can be interpreted with the failure of the thermodynamic balance: the stored elastic energy during cooling should be different from the released elastic energy during heating.
Author Contributions
Funding
Conflicts of Interest
References
- Niendorf, T.; Krooß, P.; Somsen, C.; Eggeler, G.; Chumlyakov, Y.I.; Maier, H.J. Martensite aging—Avenue to new high temperature shape memory alloys. Acta Mater. 2015, 89, 298–304. [Google Scholar] [CrossRef]
- Picornell, C.; Pons, J.; Cesari, E. Stabilisation of martensite by applying compressive stress in Cu-Al-Ni single crystals. Acta Mater. 2001, 49, 4221–4230. [Google Scholar] [CrossRef]
- Chernenko, V.A.; Pons, J.; Cesari, E.; Zasimchuk, I. Transformation behaviour and martensite stabilization in the ferromagnetic Co–Ni–Ga Heusler alloy. Scr. Mater. 2004, 50, 225–229. [Google Scholar] [CrossRef]
- Kadletz, P.M.; Krooß, P.; Chumlyakov, Y.I.; Gutmann, M.J.; Schmahl, W.W.; Maier, H.J.; Niendorf, T.; Krooß, P. Martensite stabilization in shape memory alloys—Experimental evidence for short-range ordering. Mater. Lett. 2015, 159, 16–19. [Google Scholar] [CrossRef]
- Timofeeva, E.; Panchenko, E.Y.; Pichkaleva, M.; Tagiltsev, A.; Chumlyakov, Y. The effect of stress-induced martensite ageing on the two-way shape memory effect in Ni53Mn25Ga22 single crystals. Mater. Lett. 2018, 228, 490–492. [Google Scholar] [CrossRef]
- Panchenko, E.; Timofeeva, E.; Chumlyakov, Y.I.; Osipovich, K.; Tagiltsev, A.; Gerstein, G.; Maier, H. Compressive shape memory actuation response of stress-induced martensite aged Ni51Fe18Ga27Co4 single crystals. Mater. Sci. Eng. A 2019, 746, 448–455. [Google Scholar] [CrossRef]
- Panchenko, E.; Timofeeva, E.; Eftifeeva, A.; Osipovich, K.; Surikov, N.; Chumlyakov, Y.; Gerstein, G.; Maier, H. Giant rubber-like behavior induced by martensite aging in Ni51Fe18Ga27Co4 single crystals. Scr. Mater. 2019, 162, 387–390. [Google Scholar] [CrossRef]
- Panchenko, E.; Eftifeeva, A.; Chumlyakov, Y.; Gerstein, G.; Maier, H. Two-way shape memory effect and thermal cycling stability in Co35Ni35Al30 single crystals by low-temperature martensite ageing. Scr. Mater. 2018, 150, 18–21. [Google Scholar] [CrossRef]
- Gerstein, G.; L’Vov, V.; Kosogor, A.; Maier, H.J. Internal pressure as a key thermodynamic factor to obtain high-temperature superelasticity of shape memory alloys. Mater. Lett. 2018, 210, 252–254. [Google Scholar] [CrossRef]
- Ahlers, M.; Pelegrina, J.L. Ageing of martensite: Stabilisation and ferroelasticity in Cu-based shape memory alloys. Mater. Sci. Eng. A 2003, 356, 298–315. [Google Scholar] [CrossRef]
- Ren, X.; Otsuka, K. Origin of rubber-like behaviour in metal alloys. Nature 1997, 389, 579–582. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Mechanism of martensite aging effects and new aspects. Mater. Sci. Eng. A 2001, 312, 207–218. [Google Scholar] [CrossRef]
- Zhao, D.; Xiao, F.; Nie, Z.; Cong, D.; Sun, W.; Liu, J. Burst-like superelasticity and elastocaloric effect in [011] oriented Ni50Fe19Ga27Co4 single crystals. Scr. Mater. 2018, 149, 6–10. [Google Scholar] [CrossRef]
- Nikolaev, V.I.; Yakushev, P.N.; Malygin, G.A.; Averkin, A.I.; Pulnev, S.A.; Zograf, G.P.; Kustov, S.B.; Chumlyakov, Y.I. Influence of partial shape memory deformation on the burst character of its recovery in heated Ni–Fe–Ga–Co alloy crystals. Tech. Phys. Lett. 2016, 42, 399–402. [Google Scholar] [CrossRef]
- Samy, N.; Daróczi, L.; Tóth, L.; Panchenko, E.; Chumlyakov, Y.; Surikov, N.; Beke, D.L. Effect of Stress-Induced Martensite Stabilization on Acoustic Emission Characteristics and the Entropy of Martensitic Transformation in Shape Memory Ni51Fe18Ga27Co4 Single Crystal. Metals 2020, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Kustov, S.; Pons, J.; Cesari, E.; Van Humbeeck, J. Chemical and mechanical stabilization of martensite. Acta Mater. 2004, 52, 4547–4559. [Google Scholar] [CrossRef]
- Beke, D.L.; Daróczi, L.; Tóth, L.; Bolgár, M.; Samy, N.; Hudák, A. Acoustic Emissions during Structural Changes in Shape Memory Alloys. Metals 2019, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Straka, L.; Novák, V.; Landa, M.; Heczko, O. Acoustic emission of Ni–Mn–Ga magnetic shape memory alloy in different straining modes. Mater. Sci. Eng. A 2004, 374, 263–269. [Google Scholar] [CrossRef]
- Gallardo, M.C.; Manchado, J.; Romero, F.J.; Del Cerro, J.; Salje, E.K.; Planes, A.; Vives, E.; Romero, R.; Stipcich, M. Avalanche criticality in the martensitic transition of Cu67.64Zn16.71Al15.65 shape-memory alloy: A calorimetric and acoustic emission study. Phys. Rev. B 2010, 81, 174102. [Google Scholar] [CrossRef] [Green Version]
- Bonnot, E.; Vives, E.; Mañosa, L.; Planes, A.; Romero, R. Acoustic emission and energy dissipation during front propagation in a stress-driven martensitic transition. Phys. Rev. B 2008, 78, 094104. [Google Scholar] [CrossRef]
- Pieczyska, E.A.; Tobushi, H.; Takeda, K.; Stróż, D.; Ranachowski, Z.; Kulasiński, K.; Kudelar, S., Jr.; Luckner, J. Martensite transformation bands studied in TiNi shape memory alloy by infrared and acoustic emission techniques. Met. Mater. 2013, 50, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, E.; Timofeeva, E.; Pichkaleva, M.; Tokhmetova, A.; Surikov, N.; Tagiltsev, A.; Chumlyakov, Y. Effect of Stress-Induced Martensite Aging on Martensite Variant Reorientation Strain in NiMnGa Single Crystals. Shape Mem. Superelasticity 2019, 6, 29–34. [Google Scholar] [CrossRef]
- Pelegrina, J.; Ahlers, M. The martensitic phases and their stability in Cu–Zn and Cu–Zn–Al alloys—I. The transformation between the high temperature β phase and the 18R martensite. Acta Met. et Mater. 1992, 40, 3205–3211. [Google Scholar] [CrossRef]
- Stoiber, J.; Gotthardt, R.; Van Humbeeck, J. Martensitic transformation in Cu-Zn-Al: Changes in transformation entropy due to post quench ageing in the β or martensitic condition. Scr. Metall 1989, 23, 237–239. [Google Scholar]
- Bolgár, M.; Tóth, L.; Szabó, S.; Gyöngyösi, S.; Daróczi, L.; Panchenko, E.; Chumlyakov, Y.; Beke, D.L. Thermal and acoustic noises generated by austenite/martensite transformation in NiFeGaCo single crystals. J. Alloy. Compd. 2016, 658, 29–35. [Google Scholar] [CrossRef]
- Planes, A.; Macqueron, J.L.; Ortín, J. Energy contributions in the martensitic transformation of shape-memory alloys. Philos. Mag. Lett. 1988, 57, 291–298. [Google Scholar] [CrossRef]
- Beke, D.L.; Daróczi, L.Y.; Elrasasi, T.; Fernandes, F.M.B. (Eds.) Shape Memory Alloys-Processing, Characterization and Applications, Chapter 7: “Determination of Elastic and Dissipative Energy Contributions to Martensitic Phase Transformation in Shape Memory Alloys”; In Tech: London, UK, 2013; pp. 167–196. [Google Scholar] [CrossRef] [Green Version]
- Tóth, L.Z.; Daróczi, L.; Szabó, S.; Beke, D. Simultaneous investigation of thermal, acoustic, and magnetic emission during martensitic transformation in single-crystallineNi2MnGa. Phys. Rev. B 2016, 93, 144108. [Google Scholar] [CrossRef] [Green Version]
- Mañosa, L.; Planes, A.; Rouby, D.; Morin, M.; Fleischmann, P.; Macqueron, J.L. Acoustic emission field during thermoelastic martensitic transformations. Appl. Phys. Lett. 1989, 54, 2574–2576. [Google Scholar] [CrossRef]
- Rosinberg, M.-L.; Vives, E. Metastability, Hysteresis, Avalanches, and Acoustic Emission: Martensitic Transitions in Functional Materials. In Self-Organized Morphology in Nanostructured Materials; Springer Series in Materials Science; Springer: Berlin, Germany, 2011; Volume 148, pp. 249–272. [Google Scholar]
- Planes, A.; Vives, E. Avalanche criticality in thermal-driven martensitic transitions: The asymmetry of the forward and reverse transitions in shape-memory materials. J. Physics: Condens. Matter 2017, 29, 334001. [Google Scholar] [CrossRef]
- Khovailo, V.; Oikawa, K.; Abe, T.; Takagi, T. Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni[sub 2+x]Mn[sub 1−x]Ga. J. Appl. Phys. 2003, 93, 8483. [Google Scholar] [CrossRef] [Green Version]
- Seguí, C.; Cesari, E. Contributions to the Transformation Entropy Change and Influencing Factors in Metamagnetic Ni-Co-Mn-Ga Shape Memory Alloys. Entropy 2014, 16, 5560–5574. [Google Scholar] [CrossRef] [Green Version]
- Marcos, J.; Planes, A.; Mañosa, L.; Casanova, F.; Batlle, X.; Labarta, A.; Martínez, B. Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys. Phys. Rev. B 2002, 66, 224413. [Google Scholar] [CrossRef] [Green Version]
- Beke, D.; Bolgár, M.; Tóth, L.; Daróczi, L. On the asymmetry of the forward and reverse martensitic transformations in shape memory alloys. J. Alloy. Compd. 2018, 741, 106–115. [Google Scholar] [CrossRef] [Green Version]
Sample | As (K) | Af (K) | Ms (K) | Mf (K) | Δs (J/mol·K) |
---|---|---|---|---|---|
as grown | 378 | 426 | 415 | 365 | 1.37 |
SIM-aged | 416 | 420 | 396 | 366 | 1.01 |
Sample | AE for Heating | AE for Cooling | ||||||
---|---|---|---|---|---|---|---|---|
Ntotal | N/m (1/mg) | Eav (Arb. Units) | ε | Ntotal | N/m (1/mg) | Eav (Arb. Units) | ε | |
as grown | 1606 | 36 | 0.436 | 1.98 ± 0.05 | 17068 | 385 | 1.18 | 1.78 ± 0.05 |
SIM-aged | 1380 | 97 | 0.634 | 1.84 ± 0.05 | 1750 | 123 | 0.257 | 2.06 ± 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, L.Z.; Daróczi, L.; Panchenko, E.; Chumlyakov, Y.; Beke, D.L. Acoustic Emission Characteristics and Change the Transformation Entropy after Stress-Induced Martensite Stabilization in Shape Memory Ni53Mn25Ga22 Single Crystal. Materials 2020, 13, 2174. https://doi.org/10.3390/ma13092174
Tóth LZ, Daróczi L, Panchenko E, Chumlyakov Y, Beke DL. Acoustic Emission Characteristics and Change the Transformation Entropy after Stress-Induced Martensite Stabilization in Shape Memory Ni53Mn25Ga22 Single Crystal. Materials. 2020; 13(9):2174. https://doi.org/10.3390/ma13092174
Chicago/Turabian StyleTóth, László Zoltán, Lajos Daróczi, Elena Panchenko, Yuri Chumlyakov, and Dezső László Beke. 2020. "Acoustic Emission Characteristics and Change the Transformation Entropy after Stress-Induced Martensite Stabilization in Shape Memory Ni53Mn25Ga22 Single Crystal" Materials 13, no. 9: 2174. https://doi.org/10.3390/ma13092174
APA StyleTóth, L. Z., Daróczi, L., Panchenko, E., Chumlyakov, Y., & Beke, D. L. (2020). Acoustic Emission Characteristics and Change the Transformation Entropy after Stress-Induced Martensite Stabilization in Shape Memory Ni53Mn25Ga22 Single Crystal. Materials, 13(9), 2174. https://doi.org/10.3390/ma13092174