Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm2O3 and Eu2O3) Confined in Magnesia (MgO) Matrix
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grover, V.; Tyagi, A. Phase relations, lattice thermal expansion in CeO2–Gd2O3 system, and stabilization of cubic gadolinia. Mater. Res. Bull. 2004, 39, 859–866. [Google Scholar] [CrossRef]
- Tsuzuki, T.; Pirault, E.; McCormick, P. Mechanochemical synthesis of gadolinium oxide nanoparticles. Nanostruct. Mater. 1999, 11, 125–131. [Google Scholar] [CrossRef]
- Fanciulli, M.; Scarel, G. Rare Earth Oxide Thin Films, 1st ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Zinkevich, M. Thermodynamics of rare earth sesquioxides. Prog. Mater. Sci. 2007, 52, 597–647. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, J.; Lin, C.; Bai, L.; Xiao, W.; Zhang, Y.; Zhang, D.; Li, X.; Li, Y.; Tang, L. Pressure-induced phase transition in cubic Lu2O3. J. Appl. Phys. 2010, 108, 083541. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, J.; Li, X.; Bai, L.; Xiao, W.; Zhang, Y.; Lin, C.; Li, Y.; Tang, L. Phase transformation of Ho2O3 at high pressure. J. Appl. Phys. 2011, 110, 013526. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, J.; Lin, C.; Bai, L.; Zhang, Y.; Li, X.; Li, Y.; Tang, L.; Wang, H. Structural transformations in cubic Dy2O3 at high pressures. Solid State Commun. 2013, 169, 37–41. [Google Scholar] [CrossRef]
- Goldschmidt, V.; Ulrich, F.; Barth, T. Geochemical Distribution of the Elements: IV Crystal Structure of Oxides of the Rare Earth Metals. Skr. Nor. Vidensk. 1925, 5, 5. [Google Scholar]
- Foex, M.; Traverse, J. Investigations about Crystalline Transformation in RARE Earths Sesquioxides at High Temperatures; CNRS: Mont-Louis, France, 1966. [Google Scholar]
- Chikalla, T.; McNeilly, C.; Roberts, F. Polymorphic modifications of Pm2O3. J. Am. Ceram Soc. 1972, 55, 428–429. [Google Scholar] [CrossRef]
- Roth, R.; Schneider, S. Phase equilibria in systems involving the rare-earth oxides. Part I. Polymorphism of the oxides of the trivalent rare-earth ions. J. Res. Natl. Bur. Stand.–A Phys. Chem. 1960, 64A, 309–316. [Google Scholar] [CrossRef]
- Warshaw, I.; Roy, R. Polymorphism of the rare earth sesquioxides. J. Phys. Chem. 1961, 65, 2048–2051. [Google Scholar] [CrossRef]
- Antic, B.; Mitric, M.; Rodic, D. Cation ordering in cubic and monoclinic: An x-ray powder diffraction and magnetic susceptibility study. J. Phys. Condens. Matter 1997, 9, 365. [Google Scholar] [CrossRef]
- Quesada, A.; del Campo, A.; Fernández, J.F. Stabilization of cubic phase in dense Eu2O3 ceramics. Mater. Lett. 2015, 157, 77–80. [Google Scholar] [CrossRef]
- Adachi, G.; Imanaka, N. The binary rare earth oxides. Chem. Rev. 1998, 98, 1479–1514. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Tok, A.; Huebner, R.; Boey, F. Phase transformation of ultrafine rare earth oxide powders synthesized by radio frequency plasma spraying. J. Eur. Ceram. Soc. 2007, 27, 125–130. [Google Scholar] [CrossRef]
- Asadikiya, M.; Sabarou, H.; Chen, M.; Zhong, Y. Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv. 2016, 6, 17438–17445. [Google Scholar] [CrossRef] [Green Version]
- Kimmel, G.; Zabicky, J.; Goncharov, E.; Ari-Gur, P. Phase mapping of multi-component oxides derived from sol-gel precursors. J. Metastable Nanocryst. Mater. 2004, 20, 576–581. [Google Scholar] [CrossRef]
- Kimmel, G.; Zabicky, J. Stability, instability, metastability and grain size in nanocrystalline ceramic oxide systems. Solid State Phenom. 2008, 140, 29–36. [Google Scholar] [CrossRef]
- Navrotsky, A. Energetics of nanoparticle oxides: Interplay between surface energy and polymorphism. Geochem. Trans. 2003, 4, 34. [Google Scholar] [CrossRef]
- Kimmel, G.; Shneck, R.Z.; Lojkowski, W.; Porat, Z.; Chudoba, T.; Mogilyanski, D.; Gierlotka, S.; Ezersky, V.; Zabicky, J. Phase stability of rare earth sesquioxides with grain size controlled in the nanoscale. J. Am. Ceram. Soc. 2019, 102, 3829–3835. [Google Scholar] [CrossRef]
- Barad, C.; Kimmel, G.; Shamir, D.; Hirshberg, K.; Gelbstein, Y. Lattice variations in nanocrystalline Y2O3 confined in magnesia (MgO) matrix. J. Alloys Compd. 2019, 801, 375–380. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Rodrigez-Carvajal, J. Fullprof, Program for Rietveld Refinement; Version 3.7; Laboratories Léon Brillouin (CEA-CNRS): Paris, France, 1997. [Google Scholar]
- Roisnel, T.; Rodríquez-Carvajal, J. WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 378, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Reeber, R.R.; Goessel, K.; Wang, K. Thermal expansion and molar volume of MgO, periclase. Eur. J. Miner. 1995, 7, 1039–1047. [Google Scholar] [CrossRef]
- Stecura, S.; Campbell, W.J. Thermal Expansion and Phase Inversion of Rare-Earth Oxides; Report 5847; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1961.
- Garvie, R.C.; Nicholson, P.S. Phase analysis in zirconia systems. J. Am. Ceram. Soc. 1972, 55, 303–305. [Google Scholar] [CrossRef]
- Garvie, R.C. The occurrence of metastable tetragonal zirconia as crystallite size effect. J. Phys. Chem. 1965, 69, 1238–1243. [Google Scholar] [CrossRef]
- Mohanty, P.; Ram, S. Confined growth of Eu2O3 nanoparticles in a new polymorph in amorphous mesoporous Al2O3. Philos. Mag. B 2002, 82, 1129–1144. [Google Scholar] [CrossRef]
- Gourlaouen, V.; Schnedecker, G.; Lejus, A.; Boncoeur, M.; Collongues, R. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties. Mater. Res. Bull. 1993, 28, 415–425. [Google Scholar] [CrossRef]
- Yokogawa, Y.; Yoshimura, M.; Sōmiya, S. Lattice energy and polymorphism of rare-earth oxides. J. Mater. Sci. Lett. 1991, 10, 509–511. [Google Scholar] [CrossRef]
- Kear, B.H.; Sadangi, R.; Shukla, V.; Stefanik, T.; Gentilman, R. Submicron-grained transparent yttria composites. Int. Soc. Opt. Photonics 2005, 5786, 227–234. [Google Scholar] [CrossRef]
RE2O3 | Required vol % of RE2O3 in MgO | Theoretical wt% of RE2O3 | ICP-OES results-wt% of RE2O3 |
---|---|---|---|
Sm2O3 | 5 | 9.48 | 9.36 ± 0.74 |
10 | 18.10 | 17.8 ± 0.9 | |
20 | 33.21 | 34.2 ± 1.7 | |
40 | 57.10 | 59.7 ± 3.0 | |
Eu2O3 | 5 | 9.68 | 9.42 ± 0.47 |
10 | 18.45 | 18.97 ± 0.95 | |
20 | 33.74 | 33.56 ± 1.68 | |
40 | 57.59 | 58.4 ± 2.92 |
vol % of Sm2O3 | Temperature (K) | d (nm) | Phase Composition (wt %) | Lattice Parameter (Å) | |
---|---|---|---|---|---|
5 | 873 | c-10.4 | 9.9% c + 90.1% MgO | a = b = c = 10.924 | |
1073 | c-34.0 | 8.3% c + 91.7% MgO | a = b = c = 10.922 | ||
1273 | c-47.3 | 10.1% c + 89.9% MgO | a = b = c = 10.923 | ||
1373 | c-50.3 m-80.5 | 4.9% c + 6.0% m + 89.1% MgO | a = b = c = 10.920 a = 14.171 b = 3.625 c = 8.844 β = 100.04° | ||
1473 | c-56.5 m-92.7 | 2.0% c + 9.0% m + 89.0% MgO | a = b = c = 10.911 a = 14.176 b = 3.624 c = 8.843 β = 100.04° | ||
10 | 873 | c-25.6 | 17.6% c + 82.4% MgO | a = b = c = 10.928 | |
1073 | c-40.4 | 18.6% c + 81.4% MgO | a = b = c = 10.912 | ||
1273 | c-50.1 | 19.1% c + 80.9% MgO | a = b = c = 10.904 | ||
1373 | c-48.2 m-88.1 | 11.8% c + 5.8% m 82.4% MgO | a = b = c = 10.922 a = 14.168, b = 3.620, c = 8.844, β = 100.04° | ||
1473 | c-64.7 m-104.5 | 1.3% c + 17.9% m 80.8% MgO | a = b = c = 10.918 a = 14.161, b = 3.626, c = 8.848, β = 100.04° | ||
20 | 873 | c-30.3 | 33.0% c + 67.0% MgO | a = b = c = 10.927 | |
1073 | c-49.3 | 34.2% c + 65.8% MgO | a = b = c = 10.919 | ||
1273 | c-61.2 | 32.8% c + 67.2% MgO | a = b = c = 10.919 | ||
1373 | c-62.5 m-110.5 | 8.5% c + 25.2% m + 66.3% MgO | a = b = c = 10.924 a = 14.161, b = 3.620, c = 8.844, β = 100.04° | ||
1473 | c-71.2 m-135.8 | 0.1% c + 33.1% m + 66.8% MgO | a = b = c = 10.922 a = 14.168, b = 3.624, c = 8.847, β = 100.05° | ||
40 | 873 | c-37.2 | 57.8% c + 42.2% MgO | a = b = c = 10.926 | |
1073 | c- 56.3 | 58.1% c + 41.9% MgO | a = b = c = 10.921 | ||
1273 | c-70.2 | 56.5% c + 43.5% MgO | a = b = c = 10.917 | ||
1373 | c-63.4 m-120.7 | 20.4% c + 36.1% m + 43.5% MgO | a = b = c = 10.924 a = 14.159, b = 3.628 c = 8.841, β = 100.04° | ||
1473 | m-144.5 | 56.8% m + 43.2% MgO | a = 14.165, b = 3.623, c = 8.845, β = 100.03° | ||
pure Sm2O3 | 873 | c-35.2 | 100% c | a = b = c = 10.930 | |
1073 | c-53.4 | 100% c | a = b = c = 10.930 | ||
1273 | c-55.5 m-146.2 | 91.0% c + 9.0% m | a = b = c = 10.929 a = 14.176, b = 3.627, c = 8.852, β = 100.04° | ||
1473 | m-177.3 | 100% m | a = 14.170, b = 3.626, c = 8.848, β = 100.04° |
vol % of Eu2O3 | Temperature (K) | Approximated Average Crystal Size (nm) | Phase Composition (wt%) | Lattice Parameter (Å) |
---|---|---|---|---|
5 | 873 | c-6.2 | 9.5% c + 90.5% MgO | a = b = c =10.867 |
1073 | c-10.8 | 9.9% c + 90.1% MgO | a = b = c 10.862 | |
1273 | c-25.7 | 10.1% c +89.9% MgO | a = b = c 10.861 | |
1473 | c-30.1 | 9.3% c + 90.7% MgO | a = b = c 10.861 | |
10 | 873 | c-18.4 | 17.7% c + 82.3% MgO | a = b = c 10.865 |
1073 | c-26.7 | 18.6% c + 81.4% MgO | a = b = c 10.863 | |
1273 | c-36.4 | 18.2% c + 81.8% MgO | a = b = c 10.859 | |
1473 | c-50.2 | 18.0% c + 82.0% MgO | a = b = c 10.859 | |
20 | 873 | c-21.1 | 32.8% c + 67.2% MgO | a = b = c 10.862 |
1073 | c-29.4 | 34.0% c + 66.0% MgO | a = b = c 10.861 | |
1273 | c-49.9 | 33.5% c + 66.5% MgO | a = b = c 10.861 | |
1473 | c-60.5 | 33.6% c + 66.4% MgO | a = b = c 10.857 | |
40 | 873 | c-33.4 | 57.8% c + 42.2% MgO | a = b = c 10.867 |
1073 | c-48.4 | 57.1% c + 42.9% MgO | a = b = c 10.856 | |
1273 | c-66.4 | 58.6% c + 41.4% MgO | a = b = c 10.856 | |
1473 | m-197, c-54.5 | 8.6% m + 49.5% c + 41.9% MgO | a = b = c 10.861 a = 14.108, b = 3.602, c = 8.808, β = 100.03° | |
pure Eu2O3 | 873 | c-30.9 | 100% c | a = b = c 10.867 |
1073 | c-40.4 | 100% c | a = b = c 10.867 | |
1273 | c-71.1 | 100% c | a = b = c 10.868 | |
1473 | m-224.0, c-64.2 | 80.2% m + 19.8% c | a = b = c 10.867 a = 14.105, b = 3.601, c = 8.805, β = 100.04° |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barad, C.; Kimmel, G.; Hayun, H.; Shamir, D.; Hirshberg, K.; Gelbstein, Y. Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm2O3 and Eu2O3) Confined in Magnesia (MgO) Matrix. Materials 2020, 13, 2201. https://doi.org/10.3390/ma13092201
Barad C, Kimmel G, Hayun H, Shamir D, Hirshberg K, Gelbstein Y. Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm2O3 and Eu2O3) Confined in Magnesia (MgO) Matrix. Materials. 2020; 13(9):2201. https://doi.org/10.3390/ma13092201
Chicago/Turabian StyleBarad, Chen, Giora Kimmel, Hagay Hayun, Dror Shamir, Kachal Hirshberg, and Yaniv Gelbstein. 2020. "Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm2O3 and Eu2O3) Confined in Magnesia (MgO) Matrix" Materials 13, no. 9: 2201. https://doi.org/10.3390/ma13092201
APA StyleBarad, C., Kimmel, G., Hayun, H., Shamir, D., Hirshberg, K., & Gelbstein, Y. (2020). Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm2O3 and Eu2O3) Confined in Magnesia (MgO) Matrix. Materials, 13(9), 2201. https://doi.org/10.3390/ma13092201