Investigation on Crystallization and Magnetic Properties of (Nd, Pr, Ce)2Fe14B/α-Fe Nanocomposite Magnets by Microwave Annealing Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Crystallization Process
3.2. Comparison of Conventional Annealing and Microwave Annealing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryo, H.S.; Hu, L.X.; Kim, J.G. Micromagnetic study for magnetic properties of exchange coupled nanocomposite magnetic systems with Nd2Fe14B grains embedded in α-Fe matrix. J. Magn. Magn. Mater. 2017, 426, 46–52. [Google Scholar] [CrossRef]
- Yu, X.Q.; Yue, M.; Liu, W.Q.; Li, Z.; Zhu, M.G.; Dong, S.Z.J. Structure and intrinsic magnetic properties of MM2Fe14B (MM = La, Ce, Pr, Nd) alloys. Rare Earths 2016, 34, 614–617. [Google Scholar] [CrossRef]
- Li, H.L.; Li, W.; Zhang, Y.M.; Gunderov, D.V.; Zhang, X.Y. Phase evolution, microstructure, and magnetic properties of bulk Alpha-Fe/Nd2Fe14B nanocomposite magnets prepared by severe plastic deformation and thermal annealing. J. Alloys Compd. 2015, 651, 434–439. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Liu, W.Q.; Zhou, B.X.; Ni, J.S.; Xu, H.; Li, Q. Microstructural characteristics of Nd2Fe14B/α-Fe nanocomposite ribbons bearing Nb element. Rare Metals 2008, 27, 299–302. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhao, F.A.; Chen, N.X.; Liu, G. Theoretical investigation on the phase stability of Nd2Fe14B and site preference of V, Cr, Mn, Zr, and Nb. J. Magn. Magn. Mater. 2005, 295, 219–229. [Google Scholar] [CrossRef]
- Yamamoto, H.; Takahashi, K.; Hamano, R. Magnetic properties of low Rare-Earth composition Pr–Fe–Co–Ti–Nb–B system exchange-spring magnets. J. Alloys Compd. 2006, 408, 1417–1421. [Google Scholar] [CrossRef]
- Hussain, M.; Zhao, L.Z.; Zhang, C.; Jiao, D.L.; Zhong, X.C.; Liu, Z.W. Composition-Dependent magnetic properties of melt-spun La or/and Ce substituted nanocomposite NdFeB alloys. Phys. B 2016, 483, 69–74. [Google Scholar] [CrossRef]
- Wang, X.C.; Zhu, M.G.; Li, W.; Zheng, L.Y.; Guo, Z.H.; Du, X.; Du, A.; Wang, X.C.; Zhu, M.G. Effects of the ingot phase transition on microstructure and magnetic properties of CeNdFeB Melt-Spun ribbons. Phys. B 2015, 476, 255–258. [Google Scholar] [CrossRef]
- Yao, Q.R.; Shen, Y.H.; Yang, P.C.; Zhou, H.Y.; Rao, G.H.; Deng, J.Q.; Wang, Z.M.; Zhong, Y. Crystal structure and phase relations of Pr2Fe14B-La2Fe14B system. J. Rare Earths 2016, 34, 1121–1125. [Google Scholar] [CrossRef]
- Zhan, Y.Y.; Pan, J.; Jiang, X.L.; Liu, X.C.; Dong, Y.R.; Xiao, X.Y. Microstructure evolution and magnetic properties of the Nd9Fe81-xTi4C2Nb4Bx (x=11, 13, 15) bulk magnets prepared by copper mold suction casting. J. Rare Earths 2015, 33, 1081–1086. [Google Scholar] [CrossRef]
- Susner, M.A.; Conner, B.S.; Saparov, B.I.; McGuire, M.A.; Crumlin, E.J.; Veith, G.M.; Huibo Cao, H.B.; Shanavas, K.V.; Parker, D.S.; Zhang, Y.J. Flux growth and characterization of Ce-Substituted Nd2Fe14B single crystals. J. Magn. Magn. Mater. 2017, 434, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Zhong, Z. Research and development of Ce-Containing Nd2Fe14B-type alloys and permanent magnetic materials. J. Mater. Sci. Technol. 2017, 33, 1087–1096. [Google Scholar] [CrossRef]
- Chen, Z.; Lim, Y.K.; Brown, D. Substitution of Ce for (Nd, Pr) in Melt-Spun (Nd, Pr)–Fe–B Powders. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Zhang, W.-Y.; Zhang, S.-Y.; Yan, A.-R.; Zhang, H.-W.; Shen, B.-G. Effect of the substitution of Pr for Nd on microstructure and magnetic properties of nanocomposite Nd2Fe14B/α-Fe magnets. J. Magn. Magn. Mater. 2001, 225, 389–393. [Google Scholar] [CrossRef]
- Wei, T.; Guozhi, X. Effects of the Annealing Process on the Microwave Properties of Quenched Nd-Fe-B Alloys. In Proceedings of the 2nd International Conference on Intelligent Materials and Mechatronics(IMM 2015) and 2nd International Conference on Solar Energy Materials and Energy Engeering(SEMEE 2015), Hong Kong, China, 29 October 2015; pp. 143–147. [Google Scholar]
- Zhang, Y.J.; Ma, T.Y.; Yan, M.; Jin, J.Y.; Liu, X.L.; Xu, F.; Miao, X.F.; Liu, X.L. Squareness factors of demagnetization curves for multi-main-phase Nd-Ce-Fe-B magnets with different Ce contents. J. Magn. Magn. Mater. 2019, 487. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Han, J.Z.; Liu, S.Q.; Wan, F.M.; Tian, H.D.; Zhang, X.D.; Wang, C.S.; Yang, J.B.; Yang, Y.C. Coercivity enhancement by grain refinement for anisotropic Nd2Fe14B-type magnetic powders. Scr. Mater. 2016, 110, 57–60. [Google Scholar] [CrossRef]
- Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages, and applications. J. Alloys Compd. 2010, 494, 175–189. [Google Scholar] [CrossRef]
- Xu, R.; He, J.; Li, W.; Paine, D.C. Performance enhancement of amorphous Indium-Zinc-Oxide Thin-Film transistors by microwave annealing. Appl. Surf. Sci. 2015, 357, 1915–1919. [Google Scholar] [CrossRef]
- Cichoň, S.; Machác, P.; Fekete, L.; Lapcák, L. Direct microwave annealing of SiC substrate for rapid synthesis of quality epitaxial graphene. Carbon 2016, 98, 441–448. [Google Scholar] [CrossRef]
- Mirzaei, A.; Neri, G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sens. Actuat B Chem. 2016, 237, 749–775. [Google Scholar] [CrossRef]
- Swaminathan, V.; Deheri, P.K.; Bhame, S.D.; Ramanujan, R.V. Novel microwave assisted chemical synthesis of Nd2Fe14B hard magnetic nanoparticles. Nanoscale 2013, 5, 2718–2725. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, M.; Wang, Z.Y.; Jiang, H. Microwave Sintering of High Performance Strontium Ferrite Magnets and Their Magnetic Properties. J. Synth. Cryst. 2013, 42, 751–755. [Google Scholar]
- Gjoka, M.; Neil, D.; Hadjipanayis, G.; Niarchos, D.G. Experimental Proof of Microwave Sintering of Nd–Fe–B Powders Toward Fabrication of Permanent Magnets. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Wang, T.P.; Tian, T.; Ding, S.; Wang, Z.Y.; Ni, Q.X.; Zhou, D.; Dong, G.L.; Sui, Y.L.; Jin, M.L. Effects of Microwave-Assisted Annealing on the Structure and Magnetic Properties of (Nd0.75Pr0.25)9Fe72Ti1Zr3MnxMo4-xB10.5C0.5 Amorphous Ribbons. J. Supercond. Nov. Magn. 2018, 31, 2241–2246. [Google Scholar] [CrossRef]
- Blaine, R.L.; Kissinger, H.E. Homer Kissinger, and the Kissinger equation. Thermochim. Acta. 2012, 540, 1–6. [Google Scholar] [CrossRef]
- Zhou, X.D.; Huebner, W. Size-induced lattice relaxation in CeO2 nanoparticles. Appl. Phys. Lett. 2001, 79, 3512. [Google Scholar] [CrossRef]
- Hirosawa, S.; Matsuura, Y.; Yamamoto, H.; Fujimura, S.; Sagawa, M.; Yamauchi, H. Single crystal measurements of anisotropy constants of R2Fe14B (R = y, Ce, Pr, Nd, Gd, Tb, Dy and Ho). Jpn. J. Appl. Phys. 1985, 24, 803–805. [Google Scholar] [CrossRef]
- Herbst, J.F.; Hector, L.G. A computational quest for Nd2Fe14B-type Ce and Nd phases. J. Alloys Compd. 2017, 693, 238–244. [Google Scholar] [CrossRef]
- Yang, M.N.; Wang, H.; Hu, Y.F.; Yang, L.Y.M.; Maclennan, A.; Yang, B. Increased coercivity for Nd-Fe-B melt spun ribbons with 20 at.% Ce addition: The role of compositional fluctuation and Ce valence state. J. Alloys Compd. 2017, 710, 519–527. [Google Scholar] [CrossRef]
Power Applied | D (nm) | |
---|---|---|
α-Fe | (Nd, Pr, Ce)2Fe14B | |
conventional | 11.9 | 9.6 |
800 W | 17.7 | 12.3 |
1500 W | 25.3 | 12.9 |
2000 W | 41.3 | 18.6 |
Annealing Conditions | σs (Am2/kg) | σr (Am2/kg) | Hc (kA/m) | σr/σs |
---|---|---|---|---|
conventional | 78 | 20 | 132 | 0.26 |
800 W | 65 | 20 | 135 | 0.31 |
1500 W | 65 | 20 | 242 | 0.31 |
2000 W | 61 | 21 | 245 | 0.34 |
Annealing Time (min) | D (nm) | |
---|---|---|
α-Fe | (Nd, Pr, Ce)2Fe14B | |
5 | 26.9 | 11.7 |
10 | 41.3 | 18.6 |
15 | 60.2 | 22.4 |
Annealing Times (min) | σs (Am2/kg) | σr (Am2/kg) | Hc (kA/m) | σr/σs |
---|---|---|---|---|
5 | 81 | 21 | 127 | 0.27 |
10 | 61 | 23 | 245 | 0.38 |
15 | 74 | 18 | 119 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Shangguan, C.; Wang, Z.; Wang, T.; Wang, L.; Liu, M.; Sui, Y. Investigation on Crystallization and Magnetic Properties of (Nd, Pr, Ce)2Fe14B/α-Fe Nanocomposite Magnets by Microwave Annealing Treatment. Materials 2021, 14, 2739. https://doi.org/10.3390/ma14112739
Wang Z, Shangguan C, Wang Z, Wang T, Wang L, Liu M, Sui Y. Investigation on Crystallization and Magnetic Properties of (Nd, Pr, Ce)2Fe14B/α-Fe Nanocomposite Magnets by Microwave Annealing Treatment. Materials. 2021; 14(11):2739. https://doi.org/10.3390/ma14112739
Chicago/Turabian StyleWang, Zhanyong, Changping Shangguan, Zemin Wang, Tianpeng Wang, Lianbo Wang, Min Liu, and Yanli Sui. 2021. "Investigation on Crystallization and Magnetic Properties of (Nd, Pr, Ce)2Fe14B/α-Fe Nanocomposite Magnets by Microwave Annealing Treatment" Materials 14, no. 11: 2739. https://doi.org/10.3390/ma14112739
APA StyleWang, Z., Shangguan, C., Wang, Z., Wang, T., Wang, L., Liu, M., & Sui, Y. (2021). Investigation on Crystallization and Magnetic Properties of (Nd, Pr, Ce)2Fe14B/α-Fe Nanocomposite Magnets by Microwave Annealing Treatment. Materials, 14(11), 2739. https://doi.org/10.3390/ma14112739