Effect of Accelerated Aging on Some Mechanical Properties and Wear of Different Commercial Dental Resin Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Test
2.2. Surface Microhardness
2.3. Double Bond Conversion
2.4. Two-Body Wear
2.5. Microscopic Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Hydrothermal accelerated aging decreased the flexural strength compared to the control condition for the tested RCs except for G-aenial Posterior, which showed no differences.
- Hydrothermal accelerated aging has no influence on surface microhardness and the wear of tested RCs.
- Passing the expiration date for 40 months did not affect the flexural strength and wear of tested RC. Conversely, this time aging seemed to have a negative effect on the surface microhardness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, F.; He, J.; Lassila, L.V.; Vallittu, P.K. Synthesis of a novel tertiary amine containing urethane dimethacrylate monomer (UDMTA) and its application in dental resin. J. Mater. Sci. Mater. Med. 2013, 24, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Kopperud, S.E.; Rukke, H.V.; Kopperud, H.M.; Bruzell, E.M. Light curing procedures—performance, knowledge level and safety awareness among dentists. J. Dent. 2017, 58, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Pallesen, U.; van Dijken, J.W. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. Dent. Mater. 2015, 31, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- van Dijken, J.W.; Lindberg, A. A 15-year randomized controlled study of a reduced shrinkage stress resin composite. Dent. Mater. 2015, 31, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Deligeorgi, V.; Mjör, I.A.; Wilson, N.H. An overview of reasons for the placement and replacement of restorations. Prim. Dent. Care. 2001, 8, 5–11. [Google Scholar] [CrossRef]
- Niem, T.; Youssef, N.; Wöstmann, B. Influence of accelerated ageing on the physical properties of CAD/CAM restorative materials. Clin. Oral. Investig. 2020, 24, 2415–2425. [Google Scholar] [CrossRef]
- Garoushi, S.; Lassila, L.V.; Tezvergil, A.; Vallittu, P.K. Load bearing capacity of fibre-reinforced and particulate filler composite resin combination. J. Dent. 2006, 34, 179–184. [Google Scholar] [CrossRef]
- Bijelic-Donova, J.; Garoushi, S.; Lassila, L.V.; Keulemans, F.; Vallittu, P.K. Mechanical and structural characterization of discontinuous fiber-reinforced dental resin composite. J. Dent. 2016, 52, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Vallittu, P.K. Effect of 10 years of in vitro aging on the flexural properties of fiber-reinforced resin composites. Int. J. Prosthodont. 2007, 20, 43–45. [Google Scholar]
- Lung, C.Y.; Sarfraz, Z.; Habib, A.; Khan, A.S.; Matinlinna, J.P. Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. J. Mech. Behav. Biomed. Mater. 2016, 54, 283–294. [Google Scholar] [CrossRef]
- Kruzic, J.J.; Arsecularatne, J.A.; Tanaka, C.B.; Hoffman, M.J.; Cesar, P.F. Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics. J. Mech. Behav. Biomed. Mater. 2018, 88, 504–533. [Google Scholar] [CrossRef] [PubMed]
- Barclay, C.W.; Spence, D.; Laird, W.R. Intra-oral temperatures during function. J. Oral. Rehabil. 2005, 32, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Egilmez, F.; Ergun, G.; Cekic-Nagas, I.; Vallittu, P.K.; Lassila, L.V.J. Does artificial aging affect mechanical properties of CAD/CAM composite materials. J. Prosthodont. Res. 2018, 62, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Arksornnukit, M.; Takahashi, H. Thermo-hydrolytic stability of core foundation and restorative composites. J. Prosthet. Dent. 2004, 92, 348–353. [Google Scholar] [CrossRef] [PubMed]
- D’Alpino, P.H.; Rocha Svizero, N.; Arrais, C.A.; de Oliveira, M.; Alonso, R.C.; Graeff, C.F. Polymerization kinetics and polymerization stress in resin composites after accelerated aging as a function of the expiration date. J. Mech. Behav. Biomed. Mater. 2015, 49, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Zhang, N.; Huang, M.; Lu, B.; Lamnawar, K.; Liu, C.; Shen, C. Effects of hydrothermal aging of carbon fiber reinforced polycarbonate composites on mechanical performance and sand erosion resistance. Polymers 2020, 12, 2453. [Google Scholar] [CrossRef] [PubMed]
- Bouillaguet, S.; Schütt, A.; Alander, P.; Schwaller, P.; Buerki, G.; Michler, J.; Cattani-Lorente, M.; Vallittu, P.K.; Krejci, I. Hydrothermal and mechanical stresses degrade fiber-matrix interfacial bond strength in dental fiber-reinforced composites. J. Biomed. Mater. Res. B. Appl. Biomater. 2006, 76, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, R.; Huang, L.; Wang, K.; Huang, X. Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Mater. Des. 2016, 99, 477–489. [Google Scholar] [CrossRef]
- Grammatikos, S.; Evernden, M.C.; Mitchels, J.; Zafari, B.; Mottram, J.T.; Papanicolaou, G.C. On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector. Mater. Des. 2016, 96, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Rosen, M.R. From treating solution to filler surface and beyond. The life history of a silane coupling agent. J. Coat. Tech. 1978, 50, 70–82. [Google Scholar]
- Calais, J.G.; Soderholm, K.J. Influence of filler type and water exposure on flexural strength of experimental composite resins. J. Dent. Res. 1988, 67, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Tarumi, H.; Torii, M.; Tsuchitani, Y. Relationship between particle size of barium glass filler and water sorption of light-cured composite resin. Dent. Mater. J. 1995, 14, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Garoushi, S.; Vallittu, P.; Shinya, A.; Lassila, L. Influence of increment thickness on light transmission, degree of conversion and micro hardness of bulk fill composites. Odontology 2016, 104, 291–297. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.F.; Wassell, R.W. Hardness of model dental composites—the effect of filler volume fraction and silanation. J. Mater. Sci. Mater. Med. 1999, 10, 291–294. [Google Scholar] [CrossRef]
- Condon, J.R.; Ferracane, J. In vitro wear of composite with varied cure, filler level, and filler treatment. J. Dent. Res. 1997, 76, 1405–1411. [Google Scholar] [CrossRef]
- Hahnel, S.; Schultz, S.; Trempler, C.; Ach, B.; Handel, G.; Rosentritt, M. Two-body wear of dental restorative materials. Mech. Behav. Biomed. Mater. 2011, 4, 237–244. [Google Scholar] [CrossRef]
- Garoushi, S.; Vallittu, P.K.; Lassila, L. Characterization of fluoride releasing restorative dental materials. Dent. Mater. J. 2018, 37, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Lien, W.; Vandewalle, K.S. Physical properties of a new silorane-based restorative system. Dent. Mater. 2010, 26, 337–344. [Google Scholar] [CrossRef]
- Ferracane, J.L. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent. Mater. 1985, 1, 11–14. [Google Scholar] [CrossRef]
- Imai, A.; Takamizawa, T.; Sugimura, R.; Tsujimoto, A.; Ishii, R.; Kawazu, M.; Saito, T.; Miyazaki, M. Interrelation among the handling, mechanical, and wear properties of the newly developed flowable resin composites. J. Mech. Behav. Biomed. Mater. 2019, 89, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Lassila, L.; Keulemans, F.; Vallittu, P.K.; Garoushi, S. Characterization of restorative short-fiber reinforced dental composites. Dent. Mater. J. 2020, 39, 992–999. [Google Scholar] [CrossRef] [PubMed]
- D’Alpino, P.H.; Vismara, M.V.; Mello, L.M.; Di Hipólito, V.; González, A.H.; Graeff, C.F. Resin composite characterizations following a simplified protocol of accelerated aging as a function of the expiration date. J. Mech. Behav. Biomed. Mater. 2014, 35, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, H.; Bishop, S.; Roberts, H. Flexural performance of direct resin composite restorative materials past expiration date. Eur. J. Dent. 2020, 14, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Garcia Lda, F.; Roselino Lde, M.; Pires-de-Souza Fde, C.; Consani, S. Evaluation of the conversion degree, microhardness, and surface roughness of composite resins used after their expiration date. Gen. Dent. 2010, 58, 262–267. [Google Scholar]
Brand | Manufacturer | Type | Composition |
---|---|---|---|
Supreme XTE | 3M/ESPE, St. Paul, MN, USA | Nano-filled | Bis-GMA, UDMA, TEGDMA, Bis-EMA, 78.5 wt% Zirconia/silica cluster and silica fillers (av. Ø 20 nm) |
Filtek Bulk Fill | 3M/ESPE, St. Paul, MN, USA | Nano-filled | AUDMA, UDMA, DDDMA, 76.5 wt% Zirconia/silica and ytterbium trifluoride fillers in nanometer scale (av. Ø 20 nm) |
everX Posterior | GC Corp, Tokyo, Japan | Short fiber-reinforced | Bis-GMA, PMMA, TEGDMA, millimetre scale glass fiber filler, Barium glass 76 wt%, 57 vol% |
G-aenial Posterior | GC Corp, Tokyo, Japan | Micro-hybrid | UDMA, dimethacrylate co-monomers, Prepolymerized silica and strontium fluoride containing fillers 80 wt% |
Denfil | Vericom Corp., Korea | Micro-hybrid | Bis-GMA, TEGDMA, 80 wt% Barium aluminosilicate, Fumed silica |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oja, J.; Lassila, L.; Vallittu, P.K.; Garoushi, S. Effect of Accelerated Aging on Some Mechanical Properties and Wear of Different Commercial Dental Resin Composites. Materials 2021, 14, 2769. https://doi.org/10.3390/ma14112769
Oja J, Lassila L, Vallittu PK, Garoushi S. Effect of Accelerated Aging on Some Mechanical Properties and Wear of Different Commercial Dental Resin Composites. Materials. 2021; 14(11):2769. https://doi.org/10.3390/ma14112769
Chicago/Turabian StyleOja, Jonne, Lippo Lassila, Pekka K. Vallittu, and Sufyan Garoushi. 2021. "Effect of Accelerated Aging on Some Mechanical Properties and Wear of Different Commercial Dental Resin Composites" Materials 14, no. 11: 2769. https://doi.org/10.3390/ma14112769
APA StyleOja, J., Lassila, L., Vallittu, P. K., & Garoushi, S. (2021). Effect of Accelerated Aging on Some Mechanical Properties and Wear of Different Commercial Dental Resin Composites. Materials, 14(11), 2769. https://doi.org/10.3390/ma14112769