SiC-Coated Carbon Nanotubes with Enhanced Oxidation Resistance and Stable Dielectric Properties
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Samples Preparation
2.3. Measurements
3. Results and Discussion
3.1. Dielectric Properties of CNTs Annealed at 400 °C with Different Time
3.2. The Pyrolysis Mechanism and Products of PCS at Different Temperatures
3.3. Dielectric Properties of SiC-Coated CNTs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, G.; Duan, Y.; Pang, H. Microwave Absorption of Crystalline Fe/MnO@C Nanocapsules Embedded in Amorphous Carbon. Nano-Micro Lett. 2020, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qing, Y.; Zhou, Y.; Zhao, B.; Zhi, Q.; Fan, B.; Zhang, R. Unique nanoporous structure derived frSom Co3O4–C and Co/CoO–C composites towards the ultra-strong electromagnetic absorption. Compos. B Eng. 2021, 9, 1205–1214. [Google Scholar]
- Huang, L.; Duan, Y.; Dai, X.; Zeng, Y.; Ma, G.; Liu, Y.; Gao, S.; Zhang, W. Bioinspired Metamaterials: Multibands Electromagnetic Wave Adaptability and Hydrophobic Characteristics. Small 2019, 15, e1902730. [Google Scholar] [CrossRef]
- Wang, L.; Shi, X.; Zhang, J.; Zhang, Y.; Gu, J. Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 2020, 52, 119–126. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, S.; Long, C.; Dong, B.; He, D.; Cheng, Q. Hybrid metamaterial absrober for ultra-low and dual-broadband absorption. Opt. Express 2021, 29, 14078–14086. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Liu, B.; Wu, G.; Lou, Z.; Fei, B.; Wu, R. A flexible electromagnetic wave-electrivity harvester. Nat. Commun. 2021, 12, 834–841. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Xu, H.; Wang, L.; Wu, R. An electrical switch-driven flexible electromagentic absorber. Adv. Funct. Mater. 2020, 30, 1907251–1907258. [Google Scholar] [CrossRef]
- Qing, Y.; Wen, Q.; Luo, F.; Zhou, W.; Zhu, D. Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. J. Mater. Chem. C 2015, 4, 371–375. [Google Scholar]
- Zong, M.; Huang, Y.; Zhang, N. Reduced graphene oxide-CoFe2O4 composite: Synthesis and electromagnetic absorption properties. Appl. Surf. Sci. 2015, 345, 272–278. [Google Scholar] [CrossRef]
- Zong, M.; Huang, Y.; Wu, H.; Zhao, Y.; Wang, Q.; Sun, X. One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater. Lett. 2014, 114, 52–55. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Yin, P.; Guo, A.; Huang, A.; Guo, L.; Wang, G. Tunable High-Performance Microwave Absorption of Co1-xS Hollow Spheres Constructed by Nanosheets within Ultralow Filler Loading. Adv. Funct. Mater. 2018, 28, 1800761. [Google Scholar] [CrossRef]
- Qing, Y.; Zhou, W.; Luo, F.; Zhu, D. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 2016, 42, 16412–16416. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nat. Cell Biol. 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Che, R.C.; Peng, L.-M.; Duan, X.F.; Chen, Q.; Liang, X.L. Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes. Adv. Mater. 2004, 16, 401–405. [Google Scholar] [CrossRef]
- Yu, Z.; Lv, X.; Mao, K.; Yang, Y.; Liu, A. Role of in-situ formed free carbon on electromagnetic absorption properties of polymer-derived SiC ceramics. J. Adv. Ceram. 2020, 9, 617–628. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Wang, L.; Li, J.; Feng, T.; Fan, J.; Chen, L.; Gu, J. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 2020, 22, 100486. [Google Scholar] [CrossRef]
- Che, R.; Zhi, C.; Liang, C.; Zhou, X. Fabrication and microwave absorption of carbon nanotubes∕CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 2006, 88, 033105. [Google Scholar] [CrossRef]
- Song, W.-L.; Cao, M.-S.; Hou, Z.-L.; Yuan, J.; Fang, X.-Y. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 2009, 61, 201–204. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.; Xu, B.; Sun, Q.; Zhang, W.; Zhang, Y.; Meng, F. Synthesis, structure and antioxidant performance of boron nitride (hexagonal) layers coating on carbon nanotubes (multi-walled). Appl. Surf. Sci. 2018, 450, 284–291. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, L.; Xu, Y.; Cheng, L.; Lou, J.; Zhang, J.; Yu, L. Microstructure and properties of 3D needle-punched carbon/silicon carbide brake materials. Compos. Sci. Technol. 2007, 67, 2390–2398. [Google Scholar] [CrossRef]
- Krenkel, W.; Berndt, F. C/C–SiC composites for space applications and advanced friction systems. Mater. Sci. Eng. A 2005, 412, 177–181. [Google Scholar] [CrossRef]
- Xiao, P.; Li, Z.; Zhu, Z.; Xiong, X. Preparation, Properties and Application of C/C-SiC Composites Fabricated by Warm Compacted-in situ Reaction. J. Mater. Sci. Technol. 2010, 26, 283–288. [Google Scholar] [CrossRef]
- Allebrandt (Probst), D.; Hoche, H.; Scheerer, H.; Broszeit, E.; Berger, C. Oxidation resistance of SiAlCN: H-coatings. Surf. Coat. Technol. 2007, 201, 5172–5175. [Google Scholar] [CrossRef]
- Probst, D.; Hoche, H.; Zhou, Y.; Hauser, R.; Stelzner, T.; Scheerer, H.; Broszeit, E.; Berger, C.; Riedel, R.; Stafast, H.; et al. Development of PE-CVD Si/C/N:H films for tribological and corrosive complex-load conditions. Surf. Coat. Technol. 2005, 200, 355–359. [Google Scholar] [CrossRef]
- Hu, C.; Niu, Y.; Li, H.; Ren, M.; Zheng, X.; Sun, J. SiC Coatings for Carbon/Carbon Composites Fabricated by Vacuum Plasma Spraying Technology. J. Therm. Spray Technol. 2011, 21, 16–22. [Google Scholar] [CrossRef]
- Zou, J.; Liu, L.; Chen, H.; Khondaker, S.I.; McCullough, R.D.; Huo, Q.; Zhai, L. Dispersion of Pristine Carbon Nanotubes Using Conjugated Block Copolymers. Adv. Mater. 2008, 20, 2055–2060. [Google Scholar] [CrossRef]
- Greil, P. Polymer Derived Engineering Ceramics. Adv. Eng. Mater. 2000, 2, 339–348. [Google Scholar] [CrossRef]
- Birot, M.; Pillot, J.-P.; Dunogues, J. Comprehensive Chemistry of Polycarbosilanes, Polysilazanes, and Polycarbosilazanes as Precursors of Ceramics. Chem. Rev. 1995, 95, 1443–1477. [Google Scholar] [CrossRef]
- Gupta, R.K.; Mishra, R.; Mukhopadhyay, K.; Tiwari, R.K.; Ranjan, A.; Saxena, A.K. A New Technique for Coating Silicon Carbide onto Carbon Nanotubes Using a Polycarbosilane Precursor. Silicon 2009, 1, 125–129. [Google Scholar] [CrossRef]
- Luo, M.; Li, Y.; Jin, S.; Sang, S.; Zhao, L. Oxidation resistance of multi-walled carbon nanotubes coated with polycarbosilane-derived SiCxOy ceramic. Ceram. Int. 2011, 37, 3055–3062. [Google Scholar] [CrossRef]
- Ding, D.-H.; Zhou, W.-C.; Zhou, X.; Luo, F.; Zhu, D.-M. Influence of pyrolysis temperature on structure and dielectric properties of polycarbosilane derived silicon carbide ceramic. Trans. Nonferrous Met. Soc. China 2012, 22, 2726–2729. [Google Scholar] [CrossRef]
- Fang, X.; Jiang, L.; Pan, L. High-thermally conductive AlN-based microwave attenuating composite ceramics with spherical graphite as attenuating agent. J. Adv. Ceram. 2021, 10, 301–319. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Cheng, L.; Wang, Y.; Yu, Z.; Huang, M.; Tu, H.; Xia, H. Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics. J. Mater. Sci. 2008, 43, 2806–2811. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.-S.; Jank, M.; Maier, V.; Durst, K.; Travitzky, N.; Zollfrank, C. SiC ceramic micropatterns from polycarbosilanes. J. Eur. Ceram. Soc. 2010, 30, 2773–2779. [Google Scholar] [CrossRef]
- Gu, W.; Cui, X.; Zheng, J.; Yu, J.; Zhao, Y.; Ji, G. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 2021, 67, 265–272. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, B.; Xiang, H.; Dai, F.-Z.; Wu, S.; Zhou, Y. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders. J. Adv. Ceram. 2021, 10, 62–77. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Li, X. The Kinetics of Oxidation Curing of Polycarbosilane Fibers. Korean J. Chem. Eng. 2004, 21, 901–904. [Google Scholar] [CrossRef]
- Ly, H.; Taylor, R.; Day, R. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part Ⅰ: Characterisation of PCS and curing products. J. Mater. Sci. 2001, 36, 4037–4043. [Google Scholar] [CrossRef]
- Yajima, S.; Hayashi, J.; Omori, M. Development of a silicon carbide fiber with high tensile strength. Nature 1976, 261, 683–685. [Google Scholar] [CrossRef]
- Ly, H.; Taylor, R.; Day, R. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part Ⅱ: Pyrolysis and characterisation. J. Mater. Sci. 2001, 36, 4045–4057. [Google Scholar] [CrossRef]
- Huang, Y.; Wan, C. Controllable fabrication and multifunctional applications of graphene/ceramic composites. J. Adv. Ceram. 2020, 9, 271–291. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Qing, Y.; Zhao, J.; Huang, S. SiC-Coated Carbon Nanotubes with Enhanced Oxidation Resistance and Stable Dielectric Properties. Materials 2021, 14, 2770. https://doi.org/10.3390/ma14112770
Li R, Qing Y, Zhao J, Huang S. SiC-Coated Carbon Nanotubes with Enhanced Oxidation Resistance and Stable Dielectric Properties. Materials. 2021; 14(11):2770. https://doi.org/10.3390/ma14112770
Chicago/Turabian StyleLi, Rong, Yuchang Qing, Juanjuan Zhao, and Shiwen Huang. 2021. "SiC-Coated Carbon Nanotubes with Enhanced Oxidation Resistance and Stable Dielectric Properties" Materials 14, no. 11: 2770. https://doi.org/10.3390/ma14112770
APA StyleLi, R., Qing, Y., Zhao, J., & Huang, S. (2021). SiC-Coated Carbon Nanotubes with Enhanced Oxidation Resistance and Stable Dielectric Properties. Materials, 14(11), 2770. https://doi.org/10.3390/ma14112770