Insight into the Interaction between Water and Ion-Exchanged Aluminosilicate Glass by Nanoindentation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gy, R. Ion exchange for glass strengthening. Mater. Sci. Eng. B 2008, 149, 159–165. [Google Scholar] [CrossRef]
- Varshneya, A.K. Chemical Strengthening of Glass: Lessons Learned and Yet To Be Learned. Int. J. Appl. Glass Sci. 2010, 1, 131–142. [Google Scholar] [CrossRef]
- Tadjiev, D.R.; Hand, R.J. Surface hydration and nanoindentation of silicate glasses. J. Non Cryst. Solids 2010, 356, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Rodriguez, J.A.; Hand, R.J. Evolution of the modulus and hardness of the tin and air sides of float glass as a function of hydration time. Glass Technol. Eur. J. Glass Sci. Technol. Part A 2013, 54, 36–41. [Google Scholar]
- Gösterişlioğlu, Y.; Ersundu, A.; Ersundu, M.Ç.; Sökmen, İ. Investigation the effect of weathering on chemically strengthened flat glasses. J. Non Cryst. Solids 2020, 544, 120192. [Google Scholar] [CrossRef]
- Lombardo, T.; Chabas, A.; Lefèvre, R.A.; Verità, M.; Geottibianchini, F. Weathering of float glass exposed outdoors in an urban area. Glass Technol. 2005, 46, 271–276. [Google Scholar]
- Tadjiev, D.R.; Hand, R.J. Inter-relationships between composition and near surface mechanical properties of silicate glasses. J. Non Cryst. Solids 2008, 354, 5108–5109. [Google Scholar] [CrossRef]
- Yu, J.; Jian, Q.; Yuan, W.; Gu, B.; Ji, F.; Huang, W. Further damage induced by water in micro-indentations in phosphate laser glass. Appl. Surf. Sci. 2014, 292, 267–277. [Google Scholar] [CrossRef]
- Sheth, N.; Hahn, S.H.; Ngo, D.; Howzen, A.; Bermejo, R.; van Duin, A.C.; Mauro, J.C.; Pantano, C.G.; Kim, S.H. Influence of acid leaching surface treatment on indentation cracking of soda lime silicate glass. J. Non Cryst. Solids 2020, 543, 120144. [Google Scholar] [CrossRef]
- Sirotkin, S.; Meszaros, R.; Wondraczek, L. Chemical Stability of ZnO-Na2O-SO3-P2O5 Glasses. Int. J. Appl. Glass Sci. 2012, 3, 44–52. [Google Scholar] [CrossRef]
- Wiederhorn, S.M.; Bolz, L.H. Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 1970, 53, 543–548. [Google Scholar] [CrossRef]
- Wiederhorn, S.M. Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 1967, 50, 407–414. [Google Scholar] [CrossRef]
- Bradley, L.C.; Dilworth, Z.R.; Barnette, A.L.; Hsiao, E.; Barthel, A.J.; Pantano, C.G.; Kim, S.H. Hydronium Ions in Soda-lime Silicate Glass Surfaces. J. Am. Ceram. Soc. 2013, 96, 458–463. [Google Scholar] [CrossRef]
- Surdyka, N.D.; Pantano, C.G.; Kim, S.H. Environmental effects on initiation and propagation of surface defects on silicate glasses: Scratch and fracture toughness study. Appl. Phys. A 2014, 116, 519–528. [Google Scholar] [CrossRef]
- He, H.; Qian, L.; Pantano, C.G.; Kim, S.H. Mechanochemical Wear of Soda Lime Silica Glass in Humid Environments. J. Am. Ceram. Soc. 2014, 97, 2061–2068. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Mohagheghian, I.; Li, X.; Guo, X.; Li, L.; Dear, J.P.; Yan, Y. Subcritical crack growth and lifetime prediction of chemically strengthened aluminosilicate glass. Mater. Des. 2017, 122, 128–135. [Google Scholar] [CrossRef]
- Amma, S.-I.; Luo, J.; Kim, S.H.; Pantano, C.G. Effect of glass composition on the hardness of surface layers on aluminosilicate glasses formed through reaction with strong acid. J. Am. Ceram. Soc. 2018, 101, 657–665. [Google Scholar] [CrossRef]
- Seaman, J.H.; Lezzi, P.J.; Blanchet, T.A.; Tomozawa, M. Degradation of ion-exchange strengthened glasses due to surface stress relaxation. J. Non Cryst. Solids 2014, 403, 113–123. [Google Scholar] [CrossRef]
- Pilkington, L.A. Manufacture of Flat Glass. US Patent 2,911,759, 10 11 1959. [Google Scholar]
- Pilkington, L.A. Manufacture of Flat Glass. US Patent 3,222,154, 7 12 1965. [Google Scholar]
- Pilkington, L.A.B. Review Lecture: The Float Glass Process. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1969, 314, 1–25. [Google Scholar]
- Goodman, O.; Derby, B. The mechanical properties of float glass surfaces measured by nanoindentation and acoustic microscopy. Acta Mater. 2011, 59, 1790–1799. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Zhang, X.; Yan, Y. Influence of residual compressive stress on nanoindentation response of ion-exchanged aluminosilicate float glass on air and tin sides. J. Non Cryst. Solids 2014, 385, 1–8. [Google Scholar] [CrossRef]
- Shabanov, N.S.; Rabadanov, K.S.; Suleymanov, S.I.; Amirov, A.M.; Isaev, A.B.; Sobola, D.S.; Murliev, E.K.; Asvarova, G.A. Water-soluble copper ink for the inkjet fabrication of flexible electronic components. Materials 2021, 14, 2218. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Li, L.; Yan, Y. Effects of HF etching on nanoindentation response of ion-exchanged aluminosilicate float glass on air and tin sides. J. Mater. Sci. 2017, 52, 4367–4377. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Wang, Y.; Mohagheghian, I.; Dear, J.P.; Li, L.; Yan, Y. Correlation between K+-Na+ diffusion coefficient and flexural strength of chemically tempered aluminosilicate glass. J. Non Cryst. Solids 2017, 471, 72–81. [Google Scholar] [CrossRef]
- Kishii, T. Surface stress meters utilising the optical waveguide effect of chemically tempered glasses. Opt. Lasers Eng. 1983, 4, 25–38. [Google Scholar] [CrossRef]
- ISO 14577:2007. Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters in: Part 4: Test Method for Metallic and Non-Metallic Coatings; International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- Davis, K.M.; Tomozawa, M. An infrared spectroscopic study of water-related species in silica glasses. J. Non Cryst. Solids 1996, 201, 177–198. [Google Scholar] [CrossRef]
- Walrafen, G.E.; Samanta, S.R. Infrared absorbance spectra and interactions involving OH groups in fused silica. J. Chem. Phys. 1978, 69, 493–495. [Google Scholar] [CrossRef]
- Yanagisawa, N.; Fujimoto, K.; Nakashima, S.; Kurata, Y.; Sanada, N. Micro FT-IR study of the hydration-layer during dissolution of silica glass. Geochim. Cosmochim. Acta 1997, 61, 1165–1170. [Google Scholar] [CrossRef]
- Amma, S.-I.; Luo, J.; Pantano, C.G.; Kim, S.H. Specular reflectance (SR) and attenuated total reflectance (ATR) infrared (IR) spectroscopy of transparent flat glass surfaces: A case study for soda lime float glass. J. Non Cryst. Solids 2015, 428, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Casey, W.H.; Bunker, B.C. Leaching of mineral and glass surfaces during dissolution. Rev. Mineral. 1990, 23, 397–426. [Google Scholar]
- Bunker, B.C. Molecular mechanisms for corrosion of silica and silicate glasses. J. Non Cryst. Solids 1994, 179, 300–308. [Google Scholar] [CrossRef]
- Cailleteau, C.; Angeli, F.; Devreux, F.; Gin, S.; Jestin, J.; Jollivet, P.; Spalla, O. Insight into silicate-glass corrosion mechanisms. Nat. Mater. 2008, 7, 978. [Google Scholar] [CrossRef] [PubMed]
- Ezz-Eldin, F.; Abd-Elaziz, T.; Elalaily, N. Effect of dilute HF solutions on chemical, optical, and mechanical properties of soda–lime–silica glass. J. Mater. Sci. 2010, 45, 5937–5949. [Google Scholar] [CrossRef]
- Amma, S.I.; Kim, S.H.; Pantano, C.G. Analysis of Water and Hydroxyl Species in Soda Lime Glass Surfaces Using Attenuated Total Reflection (ATR)-IR Spectroscopy. J. Am. Ceram. Soc. 2016, 99, 128–134. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, L.; Li, X.; Liu, J.; Li, J.; Yan, Y. Structure and mechanical response of chemically strengthened aluminosilicate glass under different post-annealing conditions. J. Non Cryst. Solids 2021, 554, 120620. [Google Scholar] [CrossRef]
- Ziemath, E.C.; Saggioro, B.Z.; Fossa, J.S. Physical properties of silicate glasses doped with SnO2. J. Non Cryst. Solids 2005, 351, 3870–3878. [Google Scholar] [CrossRef]
- Geotti-Bianchini, F.; Verita, M.; Guadagnino, E. Chemical characterization of the bottom side of green float glasses. Glass Sci. Technol. Frankf. Am Main 1995, 68, 251. [Google Scholar]
- Gurney, C.; Pearson, S. The Effect of the Surrounding Atmosphere on the Delayed Fracture of Glass. Proc. Phys. Soc. 2002, 62, 469. [Google Scholar] [CrossRef]
- Mackenzie, J.D.; Wakaki, J. Effects of ion exchange on the Young’s modulus of glass. J. Non Cryst. Solids 1980, 1, 385–390. [Google Scholar] [CrossRef]
- Lavers, C.R.; Ault, B.J.; Wilkinson, J.S. Characterization of secondary silver ion exchange in potassium-ion-exchanged glass waveguides. J. Phys. D Appl. Phys. 1994, 27, 235. [Google Scholar] [CrossRef]
- Ohkawa, H.; Yamanaka, K.; Saiki, H.; Nakagawa, A.; Fukawa, M.; Ishimaru, N. 63.4L: Late-News Paper: New Technology for Thinner Cover Glass Substrates: Improvement of Surface Strength by Polishing after Chemical Strengthening. SID Symp. Dig. Tech. Pap. 2013, 44, 885–887. [Google Scholar] [CrossRef]
- Guo, X.; Pivovarov, A.L.; Smedskjaer, M.M.; Potuzak, M.; Mauro, J.C. Non-conservation of the total alkali concentration in ion-exchanged glass. J. Non Cryst. Solids 2014, 387, 71–75. [Google Scholar] [CrossRef]
- Ciccotti, M. Stress-corrosion mechanisms in silicate glasses. J. Phys. D Appl. Phys. 2009, 42, 214006–214023. [Google Scholar] [CrossRef] [Green Version]
- Wiederhorn, S.M.; Fett, T.; Rizzi, G.; Hoffmann, M.J.; Guin, J.P. The effect of water penetration on crack growth in silica glass. Eng. Fract. Mech. 2013, 100, 3–16. [Google Scholar] [CrossRef]
Oxide | SiO2 | Al2O3 | MgO | Na2O | K2O | CaO | Fe2O3 | Others |
---|---|---|---|---|---|---|---|---|
Wt. % | 63.5 | 5.8 | 10.8 | 13.2 | 5.9 | 0.3 | 0.1 | 0.4 |
Ion Exchange Time (h) | CS (MPa) | DOL (μm) | ||
---|---|---|---|---|
Air Side | Tin Side | Air Side | Tin Side | |
1 | 747 ± 20 | 770 ± 20 | 15 ± 2 | 14 ± 2 |
12 | 710 ± 20 | 718 ± 20 | 43 ± 2 | 40 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Jiang, L.; Liu, J.; Wang, M.; Li, J.; Yan, Y. Insight into the Interaction between Water and Ion-Exchanged Aluminosilicate Glass by Nanoindentation. Materials 2021, 14, 2959. https://doi.org/10.3390/ma14112959
Li X, Jiang L, Liu J, Wang M, Li J, Yan Y. Insight into the Interaction between Water and Ion-Exchanged Aluminosilicate Glass by Nanoindentation. Materials. 2021; 14(11):2959. https://doi.org/10.3390/ma14112959
Chicago/Turabian StyleLi, Xiaoyu, Liangbao Jiang, Jiaxi Liu, Minbo Wang, Jiaming Li, and Yue Yan. 2021. "Insight into the Interaction between Water and Ion-Exchanged Aluminosilicate Glass by Nanoindentation" Materials 14, no. 11: 2959. https://doi.org/10.3390/ma14112959
APA StyleLi, X., Jiang, L., Liu, J., Wang, M., Li, J., & Yan, Y. (2021). Insight into the Interaction between Water and Ion-Exchanged Aluminosilicate Glass by Nanoindentation. Materials, 14(11), 2959. https://doi.org/10.3390/ma14112959