Electrode Design for MnO2-Based Aqueous Electrochemical Capacitors: Influence of Porosity and Mass Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Electrodes and Symmetric Devices
2.3. Material Characterizations and Electrochemical Measurements
3. Results and Discussion
3.1. MnO2 Structural Characterizations
3.2. Porosity Determination of α-MnO2
3.3. Electrochemical Characterization of a Single α-MnO2 Electrode in a 3-Electrode cell
3.4. Electrochemical Characterization of the Symmetric Devices
3.4.1. Effect of the Porosity and Mass Loading
3.4.2. Electrochemical Impedance Spectroscopy
4. Conclusions
- (1)
- The mass loading of an electrode drastically influences the reported values, either gravimetric, areal or volumetric. Moreover, the capacitance for real-life mass loading (10–12 mgAM·cm–2) is not stabilized even after 300 cycles in the aqueous-based electrolyte. Thus, long-term pre-cycling of the electrodes must be achieved (or an alternative wetting method must be used) prior to reporting on the performance. This pre-cycling step must be clearly detailed in the experimental section of the papers.
- (2)
- Lower mass loadings (<5–6 mgAM·cm−2) systematically lead to an overestimation of capacitance values. Although it is sometimes not possible to prepare electrodes with high-mass loadings, it is mandatory to report on the mass loading achieved for the measured electrodes in the experimental section. Just providing the electrode composition is definitely not enough to give the readers a realistic idea of their performance.
- (3)
- The porosity of the electrode is a key parameter that drastically influences the performance of electrodes and devices. It is not expected for all the research groups to be equipped with the calendering process, but it is mandatory to pertinently report on the porosity of the electrodes. Only a few groups are aware of such an influence of electrode porosity which should be ideally decreased down to 50%. Such a parameter is easy to determine by measuring the average thickness of the electrode and its loading. The corresponding volumetric loading (in gelectrode·cm−3) must be compared to the volume that should fill a composite electrode of the same mass if all its components were densely packed onto the current collector.
- (4)
- Lastly, investigating a single electrode in a three-electrode cell is a mandatory step before assembling any device, but it does not enable the extrapolation to device performance, neither in terms of capacitance nor time constant.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manaf, N.S.A.; Bistamam, M.S.A.; Azam, M.A. Development of High Performance Electrochemical Capacitor: A Systematic Review of Electrode Fabrication Technique Based on Different Carbon Materials. ECS J. Solid State Sci. Technol. 2013, 2, M3101–M3119. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Li, X.; Wang, Y.; Walsh, F.C.; Ouyang, J.-H.; Jia, D.; Zhou, Y. Materials and Fabrication of Electrode Scaffolds for Deposition of MnO2 and Their True Performance in Supercapacitors. J. Power Sources 2015, 293, 657–674. [Google Scholar] [CrossRef]
- Fortunato, J.; Sassin, M.B.; Chervin, C.N.; Parker, J.F.; DeBlock, R.H.; Gorski, C.A.; Long, J.W. Optimizing Electrodeposited Manganese Oxide at Carbon Cloth Electrodes for Harvesting Salinity-Gradient Energy. J. Electrochem. Soc. 2021, 168, 024505. [Google Scholar] [CrossRef]
- Orangi, J.; Beidaghi, M. A Review of the Effects of Electrode Fabrication and Assembly Processes on the Structure and Electrochemical Performance of 2D MXenes. Adv. Funct. Mater. 2020, 30, 2005305. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Ye, Z.; Jin, Y.; Cui, C.; Xie, Q.; Wang, J.; Zhang, G.; Dong, Z.; Miao, Y.; et al. High Energy and High Power Density Supercapacitor with 3D Al Foam-Based Thick Graphene Electrode: Fabrication and Simulation. Energy Storage Mater. 2020, 33, 18–25. [Google Scholar] [CrossRef]
- Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. Appropriate Methods for Evaluating the Efficiency and Capacitive Behavior of Different Types of Supercapacitors. Electrochem. Commun. 2015, 60, 21–25. [Google Scholar] [CrossRef]
- Bhattacharjya, D.; Carriazo, D.; Ajuria, J.; Villaverde, A. Study of Electrode Processing and Cell Assembly for the Optimized Performance of Supercapacitor in Pouch Cell Configuration. J. Power Sources 2019, 439, 227106. [Google Scholar] [CrossRef]
- Brousse, T.; Taberna, P.-L.; Crosnier, O.; Dugas, R.; Guillemet, P.; Scudeller, Y.; Zhou, Y.; Favier, F.; Bélanger, D.; Simon, P. Long-Term Cycling Behavior of Asymmetric Activated Carbon/MnO2 Aqueous Electrochemical Supercapacitor. J. Power Sources 2007, 173, 633–641. [Google Scholar] [CrossRef]
- Gamby, J.; Taberna, P.L.; Simon, P.; Fauvarque, J.F.; Chesneau, M. Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors. J. Power Sources 2001, 101, 109–116. [Google Scholar] [CrossRef]
- Hoffmann, V.; Correa, C.R.; Sautter, D.; Maringolo, E.; Kruse, A. Study of the Electrical Conductivity of Biobased Carbonaceous Powder Materials under Moderate Pressure for the Application as Electrode Materials in Energy Storage Technologies. GCB Bioenergy 2019, 11, 230–248. [Google Scholar] [CrossRef] [Green Version]
- Reese, M.O.; Gevorgyan, S.A.; Jørgensen, M.; Bundgaard, E.; Kurtz, S.R.; Ginley, D.S.; Olson, D.C.; Lloyd, M.T.; Morvillo, P.; Katz, E.A.; et al. Consensus Stability Testing Protocols for Organic Photovoltaic Materials and Devices. Sol. Energy Mater. Sol. Cells 2011, 95, 1253–1267. [Google Scholar] [CrossRef]
- Khenkin, M.V.; Katz, E.A.; Abate, A.; Bardizza, G.; Berry, J.J.; Brabec, C.; Brunetti, F.; Bulović, V.; Burlingame, Q.; Di Carlo, A.; et al. Consensus Statement for Stability Assessment and Reporting for Perovskite Photovoltaics Based on ISOS Procedures. Nat. Energy 2020, 5, 35–49. [Google Scholar] [CrossRef]
- Kettle, J.; Stoichkov, V.; Kumar, D.; Corazza, M.; Gevorgyan, S.A.; Krebs, F.C. Using ISOS Consensus Test Protocols for Development of Quantitative Life Test Models in Ageing of Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2017, 167, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Mei, A.; Sheng, Y.; Ming, Y.; Hu, Y.; Rong, Y.; Zhang, W.; Luo, S.; Na, G.; Tian, C.; Hou, X.; et al. Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9000-h Operational Tracking. Joule 2020, 4, 2646–2660. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Simon, P. True Performance Metrics in Electrochemical Energy Storage. Science 2011, 334, 917–918. [Google Scholar] [CrossRef] [Green Version]
- Balducci, A.; Belanger, D.; Brousse, T.; Long, J.W.; Sugimoto, W. Perspective—A Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices. J. Electrochem. Soc. 2017, 164, A1487–A1488. [Google Scholar] [CrossRef]
- Brisse, A.-L.; Stevens, P.; Toussaint, G.; Crosnier, O.; Brousse, T. Ni(OH)2 and NiO Based Composites: Battery Type Electrode Materials for Hybrid Supercapacitor Devices. Materials 2018, 11, 1178. [Google Scholar] [CrossRef] [Green Version]
- Porcher, W.; Lestriez, B.; Jouanneau, S.; Guyomard, D. Design of Aqueous Processed Thick LiFePO4 Composite Electrodes for High-Energy Lithium Battery. J. Electrochem. Soc. 2008, 156, A133–A144. [Google Scholar] [CrossRef]
- Jacob, G.M.; Yang, Q.M.; Zhitomirsky, I. Electrodes for Electrochemical Supercapacitors. Mater. Manuf. Process. 2009, 24, 1359–1364. [Google Scholar] [CrossRef]
- Giaume, D.; Pétrissans, X.; Barboux, P. Effect of Pressure on Capacitor Electrodes Formed with Oxide Nanoparticles. J. Power Sources 2014, 272, 100–106. [Google Scholar] [CrossRef]
- Cadiou, F.; Douillard, T.; Besnard, N.; Lestriez, B.; Maire, E. Multiscale Characterization of Composite Electrode Microstructures for High Density Lithium-Ion Batteries Guided by the Specificities of Their Electronic and Ionic Transport Mechanisms. J. Electrochem. Soc. 2020, 167, 100521. [Google Scholar] [CrossRef]
- Karkar, Z.; Jaouhari, T.; Tranchot, A.; Mazouzi, D.; Guyomard, D.; Lestriez, B.; Roué, L. How Silicon Electrodes Can Be Calendered without Altering Their Mechanical Strength and Cycle Life. J. Power Sources 2017, 371, 136–147. [Google Scholar] [CrossRef]
- Sangrós Giménez, C.; Finke, B.; Schilde, C.; Froböse, L.; Kwade, A. Numerical Simulation of the Behavior of Lithium-Ion Battery Electrodes during the Calendaring Process via the Discrete Element Method. Powder Technol. 2019, 349, 1–11. [Google Scholar] [CrossRef]
- Ngandjong, A.C.; Lombardo, T.; Primo, E.N.; Chouchane, M.; Shodiev, A.; Arcelus, O.; Franco, A.A. Investigating Electrode Calendering and Its Impact on Electrochemical Performance by Means of a New Discrete Element Method Model: Towards a Digital Twin of Li-Ion Battery Manufacturing. J. Power Sources 2021, 485, 229320. [Google Scholar] [CrossRef]
- Günther, T.; Schreiner, D.; Metkar, A.; Meyer, C.; Kwade, A.; Reinhart, G. Classification of Calendering-Induced Electrode Defects and Their Influence on Subsequent Processes of Lithium-Ion Battery Production. Energy Technol. 2020, 8, 1900026. [Google Scholar] [CrossRef]
- Yang, G.-F.; Joo, S.-K. Calendering Effect on the Electrochemical Performances of the Thick Li-Ion Battery Electrodes Using a Three Dimensional Ni Alloy Foam Current Collector. Electrochim. Acta 2015, 170, 263–268. [Google Scholar] [CrossRef]
- Fongy, C.; Gaillot, A.-C.; Jouanneau, S.; Guyomard, D.; Lestriez, B. Ionic vs. Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes. J. Electrochem. Soc. 2010, 157, A885–A891. [Google Scholar] [CrossRef]
- Oltean, V.A.; Renault, S.; Brandell, D. Enhanced Performance of Organic Materials for Lithium-Ion Batteries Using Facile Electrode Calendaring Techniques. Electrochem. Commun. 2016, 68, 45–48. [Google Scholar] [CrossRef]
- Zhai, P.-Y.; Huang, J.-Q.; Zhu, L.; Shi, J.-L.; Zhu, W.; Zhang, Q. Calendering of Free-Standing Electrode for Lithium-Sulfur Batteries with High Volumetric Energy Density. Carbon 2017, 111, 493–501. [Google Scholar] [CrossRef]
- Rassek, P.; Steiner, E.; Herrenbauer, M.; Claypole, T.C. The Effect of Electrode Calendering on the Performance of Fully Printed Zn\MnO2 Batteries. Flex. Print. Electron. 2019, 4, 035003. [Google Scholar] [CrossRef]
- Kiseleva, E.A.; Lelin, F.V.; Zhurilova, M.A.; Shkol’nikov, E.I. Ways to Form Electrodes for Supercapacitors with Aqueous and Organic Electrolytes and Specific Features of These Methods. Russ. J. Appl. Chem. 2017, 90, 712–715. [Google Scholar] [CrossRef]
- Taberna, P.L.; Simon, P.; Fauvarque, J.F. Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. J. Electrochem. Soc. 2003, 150, A292–A300. [Google Scholar] [CrossRef]
- Vicat, J.; Fanchon, E.; Strobel, P.; Tran Qui, D. The Structure of K1.33Mn8O16 and Cation Ordering in Hollandite-Type Structures. Acta Cryst. B Struct. Sci. 1986, 42, 162–167. [Google Scholar] [CrossRef]
- Post, J.E.; Von Dreele, R.B.; Buseck, P.R. Symmetry and Cation Displacements in Hollandites: Structure Refinements of Hollandite, Cryptomelane and Priderite. Acta Cryst. B Struct. Sci. 1982, 38, 1056–1065. [Google Scholar] [CrossRef]
- Ghodbane, O.; Pascal, J.-L.; Favier, F. Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors. ACS Appl. Mater. Interfaces 2009, 1, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Toupin, M.; Brousse, T.; Bélanger, D. Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chem. Mater. 2002, 14, 3946–3952. [Google Scholar] [CrossRef]
- Downs, R.T.; Hall-Wallace, M. The American Mineralogist Crystal Structure Database. Am. Min. 2003, 88, 247–250. [Google Scholar]
- Barthelmy, D. Mineralogy Database. Available online: http://www.webmineral.com/ (accessed on 30 March 2021).
- Athouël, L.; Arcidiacono, P.; Ramirez-Castro, C.; Crosnier, O.; Hamel, C.; Dandeville, Y.; Guillemet, P.; Scudeller, Y.; Guay, D.; Bélanger, D.; et al. Investigation of Cavity Microelectrode Technique for Electrochemical Study with Manganese Dioxides. Electrochim. Acta 2012, 86, 268–276. [Google Scholar] [CrossRef]
- Toupin, M.; Brousse, T.; Bélanger, D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Brousse, T.; Toupin, M.; Bélanger, D. A Hybrid Activated Carbon-Manganese Dioxide Capacitor Using a Mild Aqueous Electrolyte. J. Electrochem. Soc. 2004, 151, A614–A622. [Google Scholar] [CrossRef]
- Mosqueda, H.A.; Crosnier, O.; Athouël, L.; Dandeville, Y.; Scudeller, Y.; Guillemet, P.; Schleich, D.M.; Brousse, T. Electrolytes for Hybrid Carbon–MnO2 Electrochemical Capacitors. Electrochim. Acta 2010, 55, 7479–7483. [Google Scholar] [CrossRef]
- Goubard-Bretesché, N.; Crosnier, O.; Favier, F.; Brousse, T. Improving the Volumetric Energy Density of Supercapacitors. Electrochim. Acta 2016, 206, 458–463. [Google Scholar] [CrossRef]
- Tambio, S.J.; Cadiou, F.; Maire, E.; Besnard, N.; Deschamps, M.; Lestriez, B. The Concept of Effective Porosity in the Discharge Rate Performance of High-Density Positive Electrodes for Automotive Application. J. Electrochem. Soc. 2020, 167, 160509. [Google Scholar] [CrossRef]
- Taleb, S.A.H.; Brown, D.; Dillet, J.; Guillemet, P.; Mainka, J.; Crosnier, O.; Douard, C.; Athouël, L.; Brousse, T.; Lottin, O. Direct Hybridization of Polymer Exchange Membrane Surface Fuel Cell with Small Aqueous Supercapacitors. Fuel Cells 2018, 18, 299–305. [Google Scholar] [CrossRef]
Porosity | Mass Loading | Rohmic | Cdl | Rct | ZD | −Z” | C |
---|---|---|---|---|---|---|---|
% | mgAM·cm−2 | ohm·cm2 | μF·cm−2 | ohm·cm2 | mF·cm−2 | ||
70% | Low | 1.18 | 1.50 | 13.76 | 8.61 | 574 | 139 |
Medium | 2.30 | 1.59 | 6.95 | 14.39 | 344 | 231 | |
Large | 1.27 | 4.66 | 32.47 | 39.56 | 201 | 396 | |
50% | Low | 1.14 | 3.25 | 6.10 | 3.47 | 752 | 106 |
Medium | 1.71 | 4.37 | 15.57 | 4.11 | 339 | 235 | |
Large | 0.68 | 10.65 | 22.29 | 10.33 | 196 | 406 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douard, C.; Athouël, L.; Brown, D.; Crosnier, O.; Rebmann, G.; Schilling, O.; Brousse, T. Electrode Design for MnO2-Based Aqueous Electrochemical Capacitors: Influence of Porosity and Mass Loading. Materials 2021, 14, 2990. https://doi.org/10.3390/ma14112990
Douard C, Athouël L, Brown D, Crosnier O, Rebmann G, Schilling O, Brousse T. Electrode Design for MnO2-Based Aqueous Electrochemical Capacitors: Influence of Porosity and Mass Loading. Materials. 2021; 14(11):2990. https://doi.org/10.3390/ma14112990
Chicago/Turabian StyleDouard, Camille, Laurence Athouël, David Brown, Olivier Crosnier, Guillaume Rebmann, Oliver Schilling, and Thierry Brousse. 2021. "Electrode Design for MnO2-Based Aqueous Electrochemical Capacitors: Influence of Porosity and Mass Loading" Materials 14, no. 11: 2990. https://doi.org/10.3390/ma14112990
APA StyleDouard, C., Athouël, L., Brown, D., Crosnier, O., Rebmann, G., Schilling, O., & Brousse, T. (2021). Electrode Design for MnO2-Based Aqueous Electrochemical Capacitors: Influence of Porosity and Mass Loading. Materials, 14(11), 2990. https://doi.org/10.3390/ma14112990