Development of Virtual Metrology Using Plasma Information Variables to Predict Si Etch Profile Processed by SF6/O2/Ar Capacitively Coupled Plasma
Abstract
:1. Introduction
2. Development of Etch Profile PI-VM
2.1. Experimental Setup
2.2. Flow Chart of PI-VM Model Development
2.3. Description of Plasma Information Variables from OES Data
2.3.1. Single Line Emission Intensity of Neutrals (PISingle Line)
2.3.2. Electron Temperature (PITe)
2.3.3. Neutral Density Ratio (PIDensity Ratio)
2.3.4. Inlet Gas Density (PIInlet Gas)
- In the situation where x, y, z sccm of SF6, O2, Ar flow into the chamber at the same time, the TVP position is fixed at a % to maintain the chamber pressure of 20 mTorr.
- In the situation where the TVP Position is fixed at a % and only x sccm of SF6 flows in, the chamber pressure PSF6 is measured.
- Next process is also carried out for O2 and Ar.
- The density of species X can be obtained through the following Equation (4):
2.3.5. Radical Density (PIRadical)
2.3.6. Electron Density (PIne)
2.4. Etch Profile Quantification: Etch Depth, Bowing CD, Etch Depth Times Bowing CD (Rectangular Model), and Etch Area (Non-Rectangular Model)
3. Results and Discussion
3.1. Improvement of VM Performance with Plasma Information Variables
3.2. Etch Profile PI-VM Models: Etch Depth/Bowing CD/ED × BCD (Rectangular Model)/Etch Area (Non-Rectangular Model)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Species | WL [nm] | A-Rate [106 s-1] | Elower [eV] | Eupper [eV] | Lower Level | Upper Level | ||||
---|---|---|---|---|---|---|---|---|---|---|
Conf. | Term | J | Conf. | Term | J | |||||
Ar | 425.9 | 3.98 | 11.828 | 14.738 | 3s23p5(2P1/2)4s | 2[1/2] | 1 | 3s23p5(2P1/2)5p | 2[1/2] | 0 |
Ar | 750.4 | 45 | 11.828 | 13.480 | 3s23p5(2P1/2)4s | 2[1/2] | 1 | 3s23p5(2P1/2)4p | 2[1/2] | 0 |
F | 685.6 | 48.7 | 12.697 | 14.505 | 2s22p4(3P)3s | 4P | 3/2 | 2s22p4(3P)3p | 4D | 7/2 |
F | 703.7 | 42.3 | 12.985 | 14.746 | 2s22p4(3P)3s | 2P | 3/2 | 2s22p4(3P)3p | 2P | 3/2 |
O | 777.2 | 36.9 | 9.146 | 10.741 | 2s22p3(4S)3s | 5S | 2 | 2s22p3(4S)3p | 5P | 1 |
Species | WL [nm] | Elower [eV] | Eupper [eV] | Lower Level | Upper Level | SiF Production Reaction |
---|---|---|---|---|---|---|
SiF | 440 | 0 | 2.814 | X2Π3/2 | A2Σ | 1a (R1-1) Si + 4F → SiF4 (R1-2) e + SiF4 → SiF + 3F + e 1b (R2-1) X+ + Si:SiF2 → X + SiF2 (g) (R2-2) e + SiF4 → SiF2 + 2F + e (R2-3) e + SiF2 → SiF + F + e |
References
- 2015 International Technology Roadmap for Semiconductors (ITRS). Available online: https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/ (accessed on 18 May 2021).
- Su, Y.-C.; Lin, T.-H.; Cheng, F.-T.; Wu, W.-M. Implementation considerations of various virtual metrology algorithms. In Proceedings of the 2007 IEEE International Conference on Automation Science and Engineering, Scottsdale, AZ, USA, 22–25 September 2007; pp. 276–281. [Google Scholar]
- Moyne, J.R.; Hajj, H.; Beatty, K.; Lewandowski, R. SEMI E133—The process control system standard: Deriving a software interoperability standard for advanced process control in semiconductor manufacturing. IEEE Trans. Semicond. Manuf. 2007, 20, 408–420. [Google Scholar] [CrossRef]
- Roh, H.-J.; Ryu, S.; Jang, Y.; Kim, N.-K.; Jin, Y.; Park, S.; Kim, G.-H. Development of the virtual metrology for the nitride thickness in multi-layer plasma-enhanced chemical vapor deposition using plasma-information variables. IEEE Trans. Semicond. Manuf. 2018, 31, 232–241. [Google Scholar] [CrossRef]
- Lynn, S.; Ringwood, J.; Ragnoli, E.; McLoone, S.; MacGearailty, N. Virtual metrology for plasma etch using tool variables. In Proceedings of the 2009 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Berlin, Germany, 10–12 May 2009; pp. 143–148. [Google Scholar]
- Park, S.; Cho, T.; Jang, Y.; Noh, Y.; Choi, Y.; Cha, T.; Lee, J.; Kim, B.; Yang, J.-H.; Hong, J.-J.; et al. Application of PI-VM for management of the metal target plasma etching processes in OLED display manufacturing. Plasma. Phys. Control. Fusion 2018, 61, 14032. [Google Scholar] [CrossRef]
- Park, S.; Kyung, Y.; Lee, J.; Jang, Y.; Cha, T.; Noh, Y.; Choi, Y.; Kim, B.; Cho, T.; Seo, R.; et al. Cause analysis of the faults in HARC etching processes by using the PI-VM model for OLED display manufacturing. Plasma Process. Polym. 2019, 16, 1900030. [Google Scholar] [CrossRef]
- Khan, A.A.; Moyne, J.R.; Tilbury, D.M. An approach for factory-wide control utilizing virtual metrology. IEEE Trans. Semicond. Manuf. 2007, 20, 364–375. [Google Scholar] [CrossRef]
- Gu, J.M.; Hong, S.J. Virtual metrology for tsv etch depth measurement using optical emission spectroscopy. In Proceedings of the 2015 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Seoul, Korea, 14–16 December 2015; pp. 27–30. [Google Scholar]
- Lynn, S.; Ringwood, J.V.; MacGearailt, N. Weighted windowed PLS models for virtual metrology of an industrial plasma etch process. In Proceedings of the 2010 IEEE International Conference on Industrial Technology, Vina del Mar, Chile, 14–17 March 2010; pp. 309–314. [Google Scholar]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Park, S.; Jeong, S.; Jang, Y.; Ryu, S.; Roh, H.-J.; Kim, G.-H. Enhancement of the virtual metrology performance for plasma-assisted oxide etching processes by using plasma information (PI) parameters. IEEE Trans. Semicond. Manuf. 2015, 28, 241–246. [Google Scholar] [CrossRef]
- Jang, Y.C.; Park, S.; Jeong, S.M.; Ryu, S.W.; Kim, G.H. Role of features in plasma information based virtual metrology (PI-VM) for SiO2 etching depth. J. Semicond. Disp. Technol. 2019, 18, 30–34. [Google Scholar]
- Nomura, K.; Okazaki, T.; Yasuda, S.; Kawashima, A.; Tani, H.; Masuda, K. Virtual metrology of dry etching process characteristics using EES and OES. In Proceedings of the AEC/APC Symposium Asia 2011, Tokyo, Japan, 9 November 2011. [Google Scholar]
- Lee, H.K.; Baek, K.H.; Shin, K. Resolving critical dimension drift over time in plasma etching through virtual metrology based wafer-to-wafer control. Jpn. J. Appl. Phys. 2017, 56, 66502. [Google Scholar] [CrossRef]
- Kim, D.; Hudson, E.A.; Cooperberg, D.; Edelberg, E.; Srinivasan, M. Profile simulation of high aspect ratio contact etch. Thin Solid Film. 2007, 515, 4874–4878. [Google Scholar] [CrossRef]
- Fantz, U. Basics of plasma spectroscopy. Plasma Sources Sci. Technol. 2006, 15, S137. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Boffard, J.B.; Lin, C.C.; DeJoseph, C.A., Jr. Application of excitation cross sections to optical plasma diagnostics. J. Phys. D Appl. Phys. 2004, 37, R143. [Google Scholar] [CrossRef]
- Lopaev, D.V.; Volynets, A.V.; Zyryanov, S.M.; Zotovich, A.I.; Rakhimov, A.T. Actinometry of O, N and F atoms. J. Phys. D Appl. Phys. 2017, 50, 75202. [Google Scholar] [CrossRef]
- Heppell, T.A. High vacuum pumping systems—An overview. Vacuum 1987, 37, 593–601. [Google Scholar] [CrossRef]
- Coburn, J.W.; Winters, H.F. Ion-and electron-assisted gas-surface chemistry—An important effect in plasma etching. J. Appl. Phys. 1979, 50, 3189–3196. [Google Scholar] [CrossRef] [Green Version]
- Pateau, A.; Rhallabi, A.; Fernandez, M.-C.; Boufnichel, M.; Roqueta, F. Modeling of inductively coupled plasma SF6/O2/Ar plasma discharge: Effect of O2 on the plasma kinetic properties. J. Vac. Sci. Technol. A Vac. Surf. Film. 2014, 32, 21303. [Google Scholar] [CrossRef]
- Barankin, M.D. Thin Film Coatings with an Atmospheric-Pressure Plasma; University of California: Los Angeles, CA, USA, 2010. [Google Scholar]
- NIST Atomic Spectra Database Lines Form. Available online: https://physics.nist.gov/PhysRefData/ASD/lines_form (accessed on 29 April 2021).
- Davis, S.J.; Hadley, S.G. Measurement of the radiative lifetime of the A2Σ (v′ = 0) state of SiF. Phys. Rev. A 1976, 14, 1146. [Google Scholar] [CrossRef]
Condition | Values |
---|---|
Pressure | 20 mTorr |
Top Power (60 MHz) | 500 W |
Btm Power (2 MHz) | 150 W |
Ar Flow Rate | 50 sccm |
SF6 Flow Rate | 96–144 sccm |
O2 Flow Rate | 60–90 sccm |
Process Time | 300 s |
Category | Name | Simple Expression | Target | Physical Meaning | Line Information | |
---|---|---|---|---|---|---|
EES | MFC | MFC Flow Rate | X Flow Rate | X = SF6, O2, Ar | Inlet Gas Flow Rate | - |
TVP | TVP Pos. | TVP Pos.(X) | X = On, Off, (On-Off) | Chamber Conductance | - | |
Matcher | Matcher Cap Pos. | X Y Pos. | X = VHF, LF Y = Load, Tune | Load Impedance of Plasma | - | |
PI-OES | PISingle Line | PISingle Line | I(X) or I(X,WL) | X = Ar, F, O, SiF WL = wavelength of optical emission | Single Line Emission Intensity | Ar (750.4 nm, 425.9 nm) |
F (685.6 nm, 703.7 nm) | ||||||
O (777.2 nm) | ||||||
SiF (440 nm) | ||||||
PILine Ratio | PITe | Te | - | Electron Temperature | Ar (425.9 nm)/Ar (750.4 nm) | |
PIDensity Ratio | I(X)/I(Y) | X = O, F, SiF @ Y = Ar Y = O, F, SiF @ X = Ar | Neutral Density Ratio | F (685.6 nm, 703.7 nm)/Ar (750.4 nm) | ||
O (777.2 nm)/Ar (750.4 nm) | ||||||
SiF (440 nm)/Ar (750.4 nm) | ||||||
PIDensity | PIInlet Gas | nX | X = SF6, O2, Ar | Inlet Gas Density | - | |
PIRadical | nX | X=F, O | Radical Density (PIDensity Ratio x nAr) | - | ||
PIne | ne | - | Electron Density | I(Ar, 750.4 nm)/nAr |
VM Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
Prediction and statistical feature selection method | MLR-SVS | MLR-SVS | MLR-SVS | MLR-SVS | MLR-SVS |
Input Data | EES (MFC + TVP) | EES (MFC + TVP + Matcher) | EES + PISingle Line | EES + PILine Ratio | EES + PI-OES + PIDensity |
R2 | 0.806 | 0.819 | 0.816 | 0.835 | 0.849 |
Features | O2 Flow Rate SF6 Flow Rate TVP Pos. (On) | O2 Flow Rate SF6 Flow Rate TVP Pos. (On) LF V Mag LF Tune Pos. LF Load Pos. | I(O) SF6 Flow Rate TVP Pos. (On) | O2 Flow Rate SF6 Flow Rate I(O)/I(Ar) TVP Pos. (On) I(F)/I(Ar) I(SiF)/I(Ar) | nO2 I(F) ne I(O) I(Ar)/I(F) I(SiF) |
Target | Etch Depth | Bowing CD | Bowing CD | Etch Depth Times Bowing CD | Etch Area |
---|---|---|---|---|---|
VM Model | MLR- | MLR | MLR-SVS | MLR-SVS | MLR-SVS |
Input Data | EES + PI-OES + PIDensity | Same features of PI-VM (Etch Depth) | EES + PI-OES + PIDensity | EES + PI-OES + PIDensity | EES + PI-OES + PIDensity |
R2 | 0.849 | 0.907 | 0.930 | 0.776 | 0.492 |
Features | nO2 I(F) ne I(O) I(Ar)/I(F) I(SiF) | nO2 I(F) ne I(O) I(Ar)/I(nF) I(SiF) | I(O) LF Tune Pos. nSF6 LF Load Pos. nAr SF6 Flow Rate ne I(F)/I(Ar) I(SiF)/I(Ar) VHF Tune Pos. I(Ar, 426) | I(F) I(SiF)/I(Ar) VHF Load Pos. TVP Pos. (On-Off) ne VHF Tune Pos. LF Load Pos. nO2 I(O)/I(F) I(F)/I(Ar) SF6 Flow Rate | I(O)/I(F) ne I(SiF) LF Load Pos. TVP Pos.(Off) I(F)/I(O) LF Tune Pos. Te LF V Mag. VHF Load Pos. VHF Tune Pos. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, J.-W.; Ryu, S.; Park, J.; Lee, H.; Jang, Y.; Park, S.; Kim, G.-H. Development of Virtual Metrology Using Plasma Information Variables to Predict Si Etch Profile Processed by SF6/O2/Ar Capacitively Coupled Plasma. Materials 2021, 14, 3005. https://doi.org/10.3390/ma14113005
Kwon J-W, Ryu S, Park J, Lee H, Jang Y, Park S, Kim G-H. Development of Virtual Metrology Using Plasma Information Variables to Predict Si Etch Profile Processed by SF6/O2/Ar Capacitively Coupled Plasma. Materials. 2021; 14(11):3005. https://doi.org/10.3390/ma14113005
Chicago/Turabian StyleKwon, Ji-Won, Sangwon Ryu, Jihoon Park, Haneul Lee, Yunchang Jang, Seolhye Park, and Gon-Ho Kim. 2021. "Development of Virtual Metrology Using Plasma Information Variables to Predict Si Etch Profile Processed by SF6/O2/Ar Capacitively Coupled Plasma" Materials 14, no. 11: 3005. https://doi.org/10.3390/ma14113005
APA StyleKwon, J. -W., Ryu, S., Park, J., Lee, H., Jang, Y., Park, S., & Kim, G. -H. (2021). Development of Virtual Metrology Using Plasma Information Variables to Predict Si Etch Profile Processed by SF6/O2/Ar Capacitively Coupled Plasma. Materials, 14(11), 3005. https://doi.org/10.3390/ma14113005