Bifilm Inclusions in High Alloyed Cast Iron
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SEM Analysis
3.2. EDS Analysis
4. Discussion
5. Conclusions
- Spheroidal precipitates crystallized directly from the liquid and may nucleate on the substrates created by the bifilms. This hypothesis was indirectly supported by a large number of spheroidal graphite precipitates in the presence of bifilms.
- Spheroidal graphite precipitates were forced out of the liquid. In the discussed case, the precipitates were forced in the direction of the contraction cavities.
- Contraction cavities with no visible bifilm inclusions, as well as spheroidal graphite precipitates, were observed in the sample.
- The smooth surface of spheroidal graphite precipitates suggests that primary graphite crystallized directly from the liquid.
- Spheroidal graphite precipitates occurring during the mixing in the liquid alloy ripped the bifilms.
- Some bifilm precipitates occurring in the alloy did not have the time to develop and formed tube-like shapes.
- Primary graphite was forced out of the metallic fluid. There are oxide inclusions in the way of the graphite spheroids. Spheroid graphite precipitates were captured in oxide lattices. Both were discharged from the liquid alloy towards the contraction cavity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dispinar, D.; Campbell, J. Critical assessment of reduced pressure test. Part 1: Porosity phenomena. Int. J. Cast Met. Res. 2004, 17, 280–286. [Google Scholar] [CrossRef]
- Gyarmati, G.; Fegyverneki, G.; Mende, T.; Tokár, M. Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Mater. Charact. 2019, 157, 109925. [Google Scholar] [CrossRef]
- Uludağ, M.; Çetin, R.; Dispinar, D.; Tiryakioğlu, M. Characterization of the Effect of Melt Treatments on Melt Quality in Al-7wt %Si-Mg Alloys. Metals 2017, 7, 157. [Google Scholar] [CrossRef] [Green Version]
- Tiryakioğlu, M. The Effect of Hydrogen on Pore Formation in Aluminum Alloy Castings: Myth Versus Reality. Metals 2020, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Dojka, R.; Jezierski, J.; Campbell, J. Optimized gating system for steel castings. J. Mater. Eng. Perform. 2018, 27, 5152–5163. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J. A Personal View of Microstructure and Properties of Al Alloys. Materials 2021, 14, 1297. [Google Scholar] [CrossRef]
- Campbell, J. The consolidation of metals: The origin of bifilms. J. Mater. Sci. 2016, 51, 96–106. [Google Scholar] [CrossRef]
- Campbell, J. Complete Casting Handbook, 2nd ed.; Elsevier: Oxford, UK, 2015. [Google Scholar]
- Dojka, M.; Stawarz, M. Bifilm Defects in Ti-Inoculated Chromium White Cast Iron. Materials 2020, 13, 3124. [Google Scholar] [CrossRef]
- Campbell, J. The Structure of Cast Irons. Mater. Sci. Forum 2018, 925, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Riposan, I.; Chisamera, M.; Stan, S.; Toboc, P.; Ecob, E.; White, D. Al, Zr–FeSi preconditioning of grey cast irons. Mater. Sci Technol. 2008, 24, 579–584. [Google Scholar]
- Hsu, F.; Wang, K.; Li, C. Bifilm defects in ductile-iron support bracket castings. Int. J. Cast Metal. Res. 2017, 30, 148–158. [Google Scholar] [CrossRef]
- Dojka, R.; Jezierski, J.; Tiedje, N.S. Geometric Form of Gating System Elements and Its Influence on the Initial Filling Phase. J. Mater. Eng. Perform. 2019, 28, 3922–3928. [Google Scholar] [CrossRef] [Green Version]
- Stawarz, M. Intermetallic phases in alloyed cast iron with 18% si addition. Arch. Foundry Eng. 2020, 2, 37–42. [Google Scholar] [CrossRef]
- Stawarz, M.; Kajzer, W.; Kajzer, A.; Dojka, M. Physicochemical properties of silicon cast iron. Arch. Foundry Eng. 2017, 2, 101–106. [Google Scholar] [CrossRef]
- Sakwa, W. Castings with Enhanced Properties, 1st ed.; Silesian University of Technology: Gliwice, Poland, 1973. [Google Scholar]
- Stefanescu, D.M.; Alonso, G.; Larranaga, P.; De la Fuente, E.; Suarez, R. On the crystallization of graphite from liquid iron-carbon–silicon melts. Acta Mater. 2016, 107, 102–126. [Google Scholar] [CrossRef]
- Stefanescu, D.M.; Alonso, G.; Larranaga, P.; De la Fuente, E.; Suarez, R. Reexamination of crystal growth theory of graphite in iron-carbon alloys. Acta Mater. 2017, 139, 109–121. [Google Scholar] [CrossRef]
- Stefanescu, D.M.; Alonso, G.; Larranaga, P.; De la Fuente, E.; Suarez, R. Reassessment of crystal growth theory of graphite in cast iron. Mater. Sci. Forum 2018, 925, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Alonso, G.; Stefanescu, D.M.; De la Fuente, E.; Larranaga, P.; Suarez, R. The influence of trace elements on the nature of the nuclei of the graphite in ductile iron. Mater. Sci. Forum 2018, 925, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Górny, M.; Stefanescu, D.M. Thin-Wall Ductile Iron Castings. In Cast Iron Science and Technology; Stefanescu, D.M., Ed.; ASM International: Columbus, OH, USA, 2017. [Google Scholar]
- Górny, M.; Kawalec, M.; Sikora, G.; Olejnik, E.; Lopez, H. Primary structure and graphite nodules in thin walled high-nickel ductile iron castings. Metals 2018, 8, 649. [Google Scholar] [CrossRef] [Green Version]
- Alonso, G.; Stefanescu, D.M.; Gonzalez, R.; Suarez, R. Effect of magnesium on the solid-state nucleation and growth of graphite during annealing of white iron. Int. J. Met. 2020, 14, 728–735. [Google Scholar] [CrossRef]
- Stawarz, M.; Janerka, K.; Dojka, M. Selected phenomena of the in-mold nodularization process of cast iron that influence the quality of cast machine parts. Processes 2017, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Bruna, M.; Galčík, M. Casting quality improvement by gating system optimization. Arch. Foundry Eng. 2021, 1, 132–136. [Google Scholar] [CrossRef]
- Gyarmati, G.; Fegyverneki, G.; Tokár, M.; Mende, M. Investigation on double oxide film initiated pore formation in aluminum casting alloys. Int. J. Eng. Manag. Sci. 2020, 5, 141–153. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, L.; Zhao, H.; Stefanescu, D.M. Modeling of microstructural evolution during divorced eutectic solidification of spheroidal graphite irons. Acta Mater. 2015, 84, 413–425. [Google Scholar] [CrossRef]
Chemical Composition, % of Weight | ||||||
---|---|---|---|---|---|---|
C 0.080 | Cr 0.037 | Si 0.001 | Mn 0.594 | Ni 0.024 | Mo 0.01 | S 0.006 |
Co 0.010 | Cu 0.004 | Al 0.046 | Sb 0.009 | As 0.108 | B 0.00 | P 0.016 |
Pb 0.002 | Nb 0.031 | Sn 0.009 | Ti 0.001 | W 0.011 | V 0.006 | Fe bal 98.995 |
Chemical Composition, % of Weight | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(1) Si | (2) C | (2) S | P | Mn | Mo | Cu | Mg | Ti | Fe bal | (3) Ce | |
HSCI | 18.70 | 0.52 | 0.003 | 0.022 | 0.301 | 0.022 | 0.064 | 0.00 | 0.027 | 80.34 | 6.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stawarz, M.; Dojka, M. Bifilm Inclusions in High Alloyed Cast Iron. Materials 2021, 14, 3067. https://doi.org/10.3390/ma14113067
Stawarz M, Dojka M. Bifilm Inclusions in High Alloyed Cast Iron. Materials. 2021; 14(11):3067. https://doi.org/10.3390/ma14113067
Chicago/Turabian StyleStawarz, Marcin, and Malwina Dojka. 2021. "Bifilm Inclusions in High Alloyed Cast Iron" Materials 14, no. 11: 3067. https://doi.org/10.3390/ma14113067
APA StyleStawarz, M., & Dojka, M. (2021). Bifilm Inclusions in High Alloyed Cast Iron. Materials, 14(11), 3067. https://doi.org/10.3390/ma14113067