Effective Singlet Oxygen Sensitizers Based on the Phenazine Skeleton as Efficient Light Absorbers in Dye Photoinitiating Systems for Radical Polymerization of Acrylates
Abstract
:1. Introduction
- It has a high molar absorption coefficient at the excitation wavelength and the appropriate spectral characteristics enabling selective excitation of the sensitizer, while limiting the excitation of other molecules present in the solution;
- It has a low triplet state energy [20].
2. Materials and Methods
2.1. Reagents
2.2. Synthesis
2.3. Methods
3. Results
- M—the molar concentration of the monomer;
- kp—the polymerization rate constant;
- Ia—the absorbed radiation intensity;
- φT—the quantum yield of triplet state formation;
- kt—the macroradical termination rate constant;
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hayyan, M.; Hashim, M.A.; Alnashef, I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, F.; Helman, W.P.; Ross, A.B. Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. J. Phys. Chem. Ref. Data 1993, 22, 113–262. [Google Scholar] [CrossRef] [Green Version]
- Olea, A.; Wilkinson, F. Singlet Oxygen Production from Excited Singlet and Triplet States of Anthracene Derivatives in Acetonitrile. J. Phys. Chem. 1995, 99, 4518–4524. [Google Scholar] [CrossRef]
- Wilkinson, F.; Helman, W.P.; Ross, A.B. Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. J. Phys. Chem. Ref. Data 1995, 24, 663–677. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.U.; Kasha, M. Red Chemiluminescence of Molecular Oxygen in Aqueous Solution. J. Chem. Phys. 1963, 39, 2105. [Google Scholar] [CrossRef]
- Seliger, H. A photoelectric method for the measurement of spectra of light sources of rapidly varying intensities. Anal. Biochem. 1960, 1, 60–65. [Google Scholar] [CrossRef]
- Foote, C.S.; Wexler, S.; Ando, W.; Higgins, R. Chemistry of singlet oxygen. IV. Oxygenations with hypochlorite-hydrogen peroxide. J. Am. Chem. Soc. 1968, 90, 975–981. [Google Scholar] [CrossRef]
- Wasserman, H.H.; Scheffer, J.R. Singlet oxygen reactions from photoperoxides. J. Am. Chem. Soc. 1967, 89, 3073–3075. [Google Scholar] [CrossRef]
- Turro, N.J.; Chow, M.-F.; Blaustein, M.A. Generation, diffusivity, and reactivity of singlet oxygen in polymer matrices. A convenient and sensitive chemiluminescent technique. J. Am. Chem. Soc. 1978, 100, 7110–7112. [Google Scholar] [CrossRef]
- Steer, R.; Darnall, K.; Pitts, J. The base-induced decomposition of peroxyacetylnitrate. Tetrahedron Lett. 1969, 10, 3765–3767. [Google Scholar] [CrossRef]
- Murray, R.W.; Kaplan, M.L. Singlet oxygen sources in ozone chemistry. Chemical oxygenations using the adducts between phosphite esters and ozone. J. Am. Chem. Soc. 1969, 91, 5358–5364. [Google Scholar] [CrossRef]
- Wasserman, E.; Murray, R.W.; Kaplan, M.L.; Yager, W.A. Electron paramagnetic resonance of 1.DELTA. oxygen from a phosphite-ozone complex. J. Am. Chem. Soc. 1968, 90, 4160–4161. [Google Scholar] [CrossRef]
- Corey, E.J.; Taylor, W.C. A Study of the Peroxidation of Organic Compounds by Externally Generated Singlet Oxygen Molecules. J. Am. Chem. Soc. 1964, 86, 3881–3882. [Google Scholar] [CrossRef]
- Foner, S.N.; Hudson, R.L. Metastable Oxygen Molecules Produced by Electrical Discharges. J. Chem. Phys. 1956, 25, 601. [Google Scholar] [CrossRef]
- Krieger-Liszkay, A. Singlet oxygen production in photosynthesis. J. Exp. Bot. 2004, 56, 337–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, R.M. Pollution: Causes, Effects and Control; Royal Society of Chemistry: Cambridge, UK, 2001. [Google Scholar]
- Wentworth, P.; McDunn, J.E.; Wentworth, A.D.; Takeuchi, C.; Nieva, J.; Jones, T.; Bautista, C.; Ruedi, J.M.; Gutierrez, A.; Janda, K.D.; et al. Evidence for Antibody-Catalyzed Ozone Formation in Bacterial Killing and Inflammation. Science 2002, 298, 2195–2199. [Google Scholar] [CrossRef] [Green Version]
- Gollnick, K. Type II Photooxygenation Reactions in Solution. In Advances in Photochemistry; Wiley: Hoboken, NJ, USA, 2007; pp. 1–122. [Google Scholar]
- Nowakowska, M. Solvent effect on the quantum yield of the self-sensitized photoperoxidation of 1,3-diphenylisobenzofuran. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1984, 80, 2119–2126. [Google Scholar] [CrossRef]
- Kawaoka, K.; Khan, A.U.; Kearns, D.R. Role of Singlet Excited States of Molecular Oxygen in the Quenching of Organic Triplet States. J. Chem. Phys. 1967, 46, 1842–1853. [Google Scholar] [CrossRef]
- Gollnick, K.; Schenck, G.O. Mechanism and stereoselectivity of photosensitized oxygen transfer reactions. Pure Appl. Chem. 1964, 9, 507–526. [Google Scholar] [CrossRef]
- DeRosa, M.C. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233–234, 351–371. [Google Scholar] [CrossRef]
- Atmaca, G.Y. Investigation of The Differences Between Sono-Photochemical and Photochemical Studies for Singlet Oxygen Generation of Indium Phthalocyanine. Inorg. Chim. Acta 2021, 515, 120052. [Google Scholar] [CrossRef]
- Pączkowski, J. Monomeryczne i Polimeryczne Pochodne Różu Bengalskiego; ATR: Bydgoszcz, Poland, 1988. [Google Scholar]
- Schweitzer, C.; Schmidt, R. Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chem. Rev. 2003, 103, 1685–1758. [Google Scholar] [CrossRef]
- Redmond, R.W.; Gamlin, J.N. A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules. Photochem. Photobiol. 1999, 70, 391–475. [Google Scholar] [CrossRef]
- Juzeniene, A.; Peng, Q.; Moan, J. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem. Photobiol. Sci. 2007, 6, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, S.H.; Yin, J.; Yoon, J. Sonodynamic and chemodynamic therapy based on organic/organometallic sensitizers. Coord. Chem. Rev. 2021, 429, 213610. [Google Scholar] [CrossRef]
- Kumar, P.P.P.; Rahman, A.; Goswami, T.; Ghosh, H.N.; Neelakandan, P.P. Fine-Tuning Plasmon-Molecule Interactions in Gold-BODIPY Nanocomposites: The Role of Chemical Structure and Noncovalent Interactions. ChemPlusChem 2021, 86, 87–94. [Google Scholar] [CrossRef]
- Atmaca, G.Y. Investigation of singlet oxygen efficiency of di-axially substituted silicon phthalocyanine with sono-photochemical and photochemical studies. Polyhedron 2021, 193, 114894. [Google Scholar] [CrossRef]
- Bartusik, D.; Aebisher, D.; Lyons, A.M.; Greer, A. Bacterial Inactivation by a Singlet Oxygen Bubbler: Identifying Factors Controlling the Toxicity of 1O2 Bubbles. Environ. Sci. Technol. 2012, 46, 12098–12104. [Google Scholar] [CrossRef] [Green Version]
- Silverman, S.K.; Foote, C.S. Singlet oxygen and electron-transfer mechanisms in the dicyanoanthracene-sensitized photooxidation of 2,3-diphenyl-1,4-dioxene. J. Am. Chem. Soc. 1991, 113, 7672–7675. [Google Scholar] [CrossRef]
- Fouassier, J.P.; Allonas, X. Dyes and Chromophores in Polymer Science; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Czech, Z.; Kabatc, J.; Bartkowiak, M.; Licbarski, A.; Mozelewska, K.; Kwiatkowska, D. Novel Photoreactive Pressure-Sensitive Adhesives (PSA) Based on Acrylics Containing Additionable Photoinitiators. Materials 2020, 13, 5151. [Google Scholar] [CrossRef]
- Balcerak, A.; Kwiatkowska, D.; Iwińska, K.; Kabatc, J. Highly efficient UV-Vis light activated three-component photoinitiators composed of tris(trimethylsilyl)silane for polymerization of acrylates. Polym. Chem. 2020, 11, 5500–5511. [Google Scholar] [CrossRef]
- Ścigalski, F.; Jędrzejewska, B. Structural effect of oxazolone derivatives on the initiating abilities of dye-borate photoredox systems in radical polymerization under visible light. RSC Adv. 2020, 10, 21487–21494. [Google Scholar] [CrossRef]
- Jędrzejewska, B.; Wejnerowska, G. Highly Effective Sensitizers Based on Merocyanine Dyes for Visible Light Initiated Radical Polymerization. Polymers 2020, 12, 1242. [Google Scholar] [CrossRef]
- Topa, M.; Hola, E.; Galek, M.; Petko, F.; Pilch, M.; Popielarz, R.; Morlet-Savary, F.; Graff, B.; Lalevée, J.; Ortyl, J. One-component cationic photoinitiators based on coumarin scaffold iodonium salts as highly sensitive photoacid generators for 3D printing IPN photopolymers under visible LED sources. Polym. Chem. 2020, 11, 5261–5278. [Google Scholar] [CrossRef]
- Topa, M.; Ortyl, J. Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts. Materials 2020, 13, 4093. [Google Scholar] [CrossRef] [PubMed]
- Tomal, W.; Chachaj-Brekiesz, A.; Popielarz, R.; Ortyl, J. Multifunctional biphenyl derivatives as photosensitisers in various types of photopolymerization processes, including IPN formation, 3D printing of photocurable multiwalled carbon nanotubes (MWCNTs) fluorescent composites. RSC Adv. 2020, 10, 32162–32182. [Google Scholar] [CrossRef]
- Tomal, W.; Pilch, M.; Chachaj-Brekiesz, A.; Galek, M.; Morlet-Savary, F.; Graff, B.; Dietlin, C.; Lalevée, J.; Ortyl, J. Photoinitiator-catalyst systems based on meta-terphenyl derivatives as photosensitisers of iodonium and thianthrenium salts for visible photopolymerization in 3D printing processes. Polym. Chem. 2020, 11, 4604–4621. [Google Scholar] [CrossRef]
- Orzeł, A.; Podsiadły, R.; Podemska, K.; Strzelczyk, R.; Kolińska, J.; Sokołowska, J. Dyes based on the 6,7-dichloro-5,8-quinolinedione skeleton as new type II photoinitiators for radical polymerisation. Color. Technol. 2014, 130, 185–190. [Google Scholar] [CrossRef]
- Podemska, K.; Podsiadly, R.; Orzeł, A.; Kowalska, A.; Maruszewska, A.; Marcinek, A.; Sokolowska, J. 6-Pyridinium benzo[a]phenazine-5-oxide derivatives as visible photosensitisers for polymerisation. Color. Technol. 2014, 130, 250–259. [Google Scholar] [CrossRef]
- Xiao, P.; Zhang, J.; Dumur, F.; Tehfe, M.A.; Morlet-Savary, F.; Graff, B.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Prog. Polym. Sci. 2015, 41, 32–66. [Google Scholar] [CrossRef]
- Hinsberg, O. Ueber Chinoxalinbasen. Eur. J. Org. Chem. 1887, 237, 327–372. [Google Scholar] [CrossRef]
- Go, A.; Lee, G.; Kim, J.; Bae, S.; Lee, B.M.; Kim, B.H. One-pot synthesis of quinoxalines from reductive coupling of 2-nitroanilines and 1,2-diketones using indium. Tetrahedron 2015, 71, 1215–1226. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, Y.; Zhang, X.; Xiao, Y. Synthesis and photophysical properties of three ladder-type chromophores with large and rigid conjugation structures. Dye. Pigment. 2014, 102, 1–5. [Google Scholar] [CrossRef]
- Carlier, L.; Baron, M.; Chamayou, A.; Couarraze, G. Use of co-grinding as a solvent-free solid state method to synthesize dibenzophenazines. Tetrahedron Lett. 2011, 52, 4686–4689. [Google Scholar] [CrossRef] [Green Version]
- Kumbhar, A.; Kamble, S.; Barge, M.; Rashinkar, G.; Salunkhe, R. Brönsted acid hydrotrope combined catalyst for environmentally benign synthesis of quinoxalines and pyrido[2,3-b]pyrazines in aqueous medium. Tetrahedron Lett. 2012, 53, 2756–2760. [Google Scholar] [CrossRef]
- Zhang, L.; Zuo, Q. A series of blue-green-yellow-red emitting Cu(I) complexes: Molecular structure and photophysical performance. Spectrochim. Acta Part A 2019, 223, 117280. [Google Scholar] [CrossRef]
- Einat, M.; Nagler, A.; Lishner, M.; Amiel, A.; Yarkoni, S.; Rudi, A.; Gellerman, G.; Kashman, Y.; Fabian, I. Potent antileukemic activity of the novel agents norsegoline and dibezine. Clin. Cancer Res. 1995, 1, 823–829. [Google Scholar] [PubMed]
- Hussain, H.; Specht, S.; Sarite, S.R.; Saeftel, M.; Hoerauf, A.; Schulz, B.; Krohn, K. A New Class of Phenazines with Activity against a Chloroquine ResistantPlasmodium falciparumStrain and Antimicrobial Activity. J. Med. Chem. 2011, 54, 4913–4917. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Wu, Y.; Wang, X.; Yu, Z.; Xiao, L.; Liu, Y.; Tian, H.; Yao, J.; Fu, H. Modulated emission from dark triplet excitons in aza-acene compounds: Fluorescence versus phosphorescence. New J. Chem. 2017, 41, 1864–1871. [Google Scholar] [CrossRef]
- Mamada, M.; Perez-Bolivar, C.; Kumaki, D.; Esipenko, N.A.; Tokito, S.; Anzenbacher, P. Benzimidazole Derivatives: Synthesis, Physical Properties, and n-Type Semiconducting Properties. Chem. A Eur. J. 2014, 20, 11835–11846. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, X.; Pan, G.; Tian, X.; Xiao, S.; Liu, H.; Zhang, S.; Yang, B. Investigation on excited-state properties and electroluminescence performance of Donor−Acceptor materials based on quinoxaline derivatives. Org. Electron. 2019, 75, 105414. [Google Scholar] [CrossRef]
- Patil, M.U.; Shinde, S.K.; Patil, S.P.; Patil, S.S. [BBSA-DBN][HSO4]: A novel –SO3H functionalized Bronsted acidic ionic liquid for easy access of quinoxalines. Res. Chem. Intermed. 2020, 46, 4923–4938. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Giri, C.; Haldar, T.S.; Puttreddy, R.; Rissanen, K.; Mal, P. Mechanochemical Synthesis, Photophysical Properties, and X-ray Structures of N-Heteroacenes. Eur. J. Org. Chem. 2016, 2016, 1283–1291. [Google Scholar] [CrossRef]
- Turner, H.S. 482. The formation of isomeric azo-compounds in the coupling of diazonium salts with 1-naphthylamine. J. Chem. Soc. 1949, 10, 2282–2289. [Google Scholar] [CrossRef]
- Ōtani, S.; Watanabe, S.; Ogino, H.; Iijima, K.; Koitabashi, T. High Modulus Carbon Fibers from Pitch Materials. Bull. Chem. Soc. Jpn. 1972, 45, 3710–3714. [Google Scholar] [CrossRef] [Green Version]
- VanAllan, J.A.; Adel, R.E.; Reynolds, G.A. Polynuclear Heterocycles. II. Addition Reactions of Benzophenazines. J. Org. Chem. 1962, 27, 2873–2878. [Google Scholar] [CrossRef]
- Roy, N.; Sen, U.; Chaudhuri, S.R.; Muthukumar, V.; Moharana, P.; Paira, P.; Bose, B.; Gauthaman, A.; Moorthy, A. Mitochondria specific highly cytoselective iridium(iii)–Cp* dipyridophenazine (dppz) complexes as cancer cell imaging agents. Dalton Trans. 2021, 50, 2268–2283. [Google Scholar] [CrossRef]
- Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef] [Green Version]
- Olmsted, J. Calorimetric determinations of absolute fluorescence quantum yields. J. Phys. Chem. 1979, 83, 2581–2584. [Google Scholar] [CrossRef]
- Lament, B.; Karpiuk, J.; Waluk, J. Determination of triplet formation efficiency from kinetic profiles of the ground state recovery. Photochem. Photobiol. Sci. 2003, 2, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Monroe, B.M.; Weiner, S.A. Mechanisms of photochemical reactions in solution. LVIII. Photoreduction of camphorquinone. J. Am. Chem. Soc. 1969, 91, 450–456. [Google Scholar] [CrossRef]
- Pyszka, I.; Kucybała, Z.; Pączkowski, J. Reinvestigation of the Mechanism of the Free Radical Polymerization Photoinitiation Process by Camphorquinone-Coinitiator Systems: New Results. Macromol. Chem. Phys. 2004, 205, 2371–2375. [Google Scholar] [CrossRef]
- Pa̧czkowski, J.; Pietrzak, M.; Kucybała, Z. Generalization of the Kinetic Scheme for Photoinduced Polymerization via an Intermolecular Electron Transfer Process. 2. Application of the Marcus Theory. Macromolecules 1996, 29, 5057–5064. [Google Scholar] [CrossRef]
- Paczkowski, J.; Kucybala, Z. Generalization of the Kinetic Scheme for a Dye-Photosensitized Free-Radical Polymerization Initiating System via an Intermolecular Electron-Transfer Process. Application of Marcus Theory. Macromolecules 1995, 28, 269–273. [Google Scholar] [CrossRef]
- Pyszka, I.; Jędrzejewska, B.; Kucybala, Z. Modified dibenzophenazine structures as photoinitiators for radical polymerization of trimethylolpropane triacrylate: The effect of the number of nitrogen atoms in the structure. Przemysł Chem. 2020, 99, 1605–1609. [Google Scholar] [CrossRef]
- Pyszka, I.; Jędrzejewska, B.; Kucybala, Z. Phenazine derivatives as dye photoinitiators of radical polymerization of trimethylolpropane triacrylate: Impact of quantum yield of triplet state formation on photoinitiation efficiency. Przemysł Chem. 2020, 99, 691–695. [Google Scholar] [CrossRef]
- Pyszka, I.; Kucybala, Z. Benzo- and dibenzoderivatives of phenazine as dye photoinitiators of radical polymerization of trimethylolpropane triacrylate: The substituent effect in the photoredox pair. Przemysł Chem. 2019, 98, 1290–1294. [Google Scholar] [CrossRef]
Dye | Structure | ||||
---|---|---|---|---|---|
FN1 | 345 362 | 8060 10,400 | 383.0 | 0.110 | |
FN2 | 375 395 | 9700 11,400 | 413.6 | 0.044 | |
FN3 | 402 425 | 10,060 13,500 | 532.8 | 0.045 | |
FN4 | 392 414 | 9900 15,900 | 415.2 438.4 | 0.027 | |
FN5 | 392 414 | 9700 16,300 | 414.2 438.0 | 0.049 | |
FN6 | 386 407 | 9500 10,900 | 437.8 | 0.025 | |
FN7 | 409 432 | 14,000 10,800 | 543.8 | 0.025 | |
FN8 | 383 393 | 9600 9620 | 460 | 0.045 | |
FN9 | 382 403 | 20,500 25,600 | 424.2 | 0.033 | |
FN10 | 390 407 | 15,900 16,300 | 428 | 0.028 | |
FN11 | 395 411 | 14,300 15,800 | 445.6 | 0.042 | |
FN12 | 360 378 | 14,500 13,700 | 412.4 | 0.047 | |
FN13 | 437 | 11,490 | 477 | 0.100 | |
CQ | | 472 | 40 | - | - |
Dye | |||
---|---|---|---|
FN1 | 44.1 | 0.06 | - |
FN2 | 112.0 | 0.32 | 0.30 |
FN3 | 107.7 | 0.36 | 0.37 |
FN4 | 180.2 | 0.77 | 0.75 |
FN5 | 101.7 | 0.32 | - |
FN6 | 196.3 | 0.92 | 0.90 |
FN7 | 183.9 | 0.80 | 0.79 |
FN8 | 107.6 | 0.32 | 0.30 |
FN9 | 147.9 | 0.67 | - |
FN10 | 136.7 | 0.51 | - |
FN11 | 115.9 | 0.31 | - |
FN12 | 103.3 | 0.30 | - |
FN13 | 54.4 | 0.09 | - |
CQ | 234.2 | 1.00 | - |
Compound | σ, ppm | Area | ||
---|---|---|---|---|
10 min | 20 min | 30 min | ||
2,3-diphenyl-p-dioxene | 4.3612 (s, 4H) | 16.1453 | 14.8573 | 12.6815 |
ethylene glycol dibenzoate | 4.5916 (s, 4H) | 1.2199 | 2.2026 | 3.4956 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyszka, I.; Kucybała, Z.; Jędrzejewska, B. Effective Singlet Oxygen Sensitizers Based on the Phenazine Skeleton as Efficient Light Absorbers in Dye Photoinitiating Systems for Radical Polymerization of Acrylates. Materials 2021, 14, 3085. https://doi.org/10.3390/ma14113085
Pyszka I, Kucybała Z, Jędrzejewska B. Effective Singlet Oxygen Sensitizers Based on the Phenazine Skeleton as Efficient Light Absorbers in Dye Photoinitiating Systems for Radical Polymerization of Acrylates. Materials. 2021; 14(11):3085. https://doi.org/10.3390/ma14113085
Chicago/Turabian StylePyszka, Ilona, Zdzisław Kucybała, and Beata Jędrzejewska. 2021. "Effective Singlet Oxygen Sensitizers Based on the Phenazine Skeleton as Efficient Light Absorbers in Dye Photoinitiating Systems for Radical Polymerization of Acrylates" Materials 14, no. 11: 3085. https://doi.org/10.3390/ma14113085
APA StylePyszka, I., Kucybała, Z., & Jędrzejewska, B. (2021). Effective Singlet Oxygen Sensitizers Based on the Phenazine Skeleton as Efficient Light Absorbers in Dye Photoinitiating Systems for Radical Polymerization of Acrylates. Materials, 14(11), 3085. https://doi.org/10.3390/ma14113085