Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
b | dimensionless parameter | (-) |
B | mgnetic field | (T) |
C | capacitance | (pF) |
d | diameter of nanoparticle | (nm) |
D | cell gap | (μm) |
dimensionless threshold field | (-) | |
splay elastic constant | (pN) | |
unit vector of the magnetization | ||
saturation magnetization | (A/m) | |
director | ||
U | voltage | (V) |
W | anchoring energy | (N/m) |
vacuum permeability | (H/m) | |
dimensionless energy | (-) | |
volume concentration | (-) | |
magnetic susceptibility anisotropy | (-) | |
Subscripts | ||
c | threshold value for measurements in combined | |
electric and magnetic field | ||
F | threshold value for measurements in electric and | |
magnetic field separately | ||
FN | ferronematic | |
LC | liquid crystal | |
max | maximum value | |
min | minimum value | |
Abbreviations | ||
6CB | 4-cyano-4-hexylbiphenyl | |
SQUID | superconducting quantum interference device |
References
- Fréedericksz, V.; Zolina, V. Forces causing the orientation of an anisotropic liquid. Trans. Faraday Soc. 1933, 29, 919–930. [Google Scholar] [CrossRef]
- Podoliak, N.; Buchnev, O.; Bavykin, D.V.; Kulak, A.N.; Kaczmarek, M.; Sluckin, T.J. Magnetite nanorod thermotropic liquid crystal colloids: Synthesis, optics and theory. J. Colloid Interface Sci. 2012, 386, 158–166. [Google Scholar] [CrossRef]
- Tomašovičová, N.; Burylov, S.; Gdovinová, V.; Tarasov, A.; Kováč, J.; Burylova, N.; Voroshilov, A.; Kopčanský, P.; Jadżyn, J. Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles. J. Mol. Liq. 2018, 267, 390–397. [Google Scholar] [CrossRef]
- Kopčanský, P.; Gdovinová, V.; Burylov, S.; Burylova, N.; Voroshilov, A.; Majorošová, J.; Agresti, F.; Zin, V.; Barison, S.; Jadżyn, J.; et al. The influence of goethite nanorods on structural transitions in liquid crystal 6CHBT. J. Magn. Magn. Mater. 2018, 459, 26–32. [Google Scholar] [CrossRef]
- Petrescu, E.; Cirtoaje, C.; Stan, C. Dynamic behavior of a nematic liquid crystal mixed with CoFe2O4 ferromagnetic nanoparticles in a magnetic field. Beilstein J. Nanotechnol. 2017, 8, 2467–2473. [Google Scholar] [CrossRef] [Green Version]
- Chemingui, M.; Singh, U.B.; Yadav, N.; Dabrowski, S.; Dhar, R. Effect of iron oxide (γ-Fe2O3) nanoparticles on the morphological, electro-optical and dielectric properties of a nematic liquid crystalline material. J. Mol. Liq. 2020, 319, 114299. [Google Scholar] [CrossRef]
- Jessy, P.J.; Bambole, V.; Deshmukh, R.R.; Patel, N. Reduced power consumption in nickel zinc ferrite nanoparticles doped blue phase chiral nematic liquid crystal devices. J. Mol. Liq. 2019, 281, 480–489. [Google Scholar] [CrossRef]
- Pandey, F.P.; Rastogi, A.; Manohar, R.; Dhar, R.; Singh, S. Dielectric and electro-optical properties of zinc ferrite nanoparticles dispersed nematic liquid crystal 4′-Heptyl-4-biphenylcarbonnitrile. Liq. Cryst. 2019, 47, 1025–1040. [Google Scholar] [CrossRef]
- Khushboo; Sharma, P.; Malik, P.; Raina, K.K. Dielectric and electro-optical studies of a nickel-ferrite-nanoparticledoped ferroelectric liquid crystal mixture. Phase Transit. 2015, 89, 144–154. [Google Scholar]
- Yadav, G.; Pathak, G.; Agrahari, K.; Kumar, M.; Khan, M.S.; Chandel, V.S.; Manohar, R. Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles. Chin. Phys. B 2019, 28, 034209. [Google Scholar] [CrossRef]
- Ayeb, H.; Derbali, M.; Mouhli, A.; Soltani, T. Viscoelastic and dielectric properties of 5CB nematic liquid crystal doped by magnetic and nonmagnetic nanoparticles. Phys. Rev. E 2020, 102, 052703. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Majles, M.H.; Saboohi, F. Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles. Phase Transit. 2016, 90, 371–379. [Google Scholar] [CrossRef]
- Yadav, G.; Roy, A.; Agrahari, K.; Katiyar, R.; Chandel, V.S.; Manohar, R. Influence of Fe2O3 nanoparticles on the birefringence property of weakly polar nematic liquid crystal. Mol. Cryst. Liq. Cryst. 2019, 680, 65–74. [Google Scholar] [CrossRef]
- Koo, W.S.; Chung, H.K.; Park, H.G.; Han, J.J.; Jeong, H.C.; Cho, M.J.; Kim, D.H.; Seo, D.S. Enhanced Switching Behavior of Iron Oxide Nanoparticle-Doped Liquid-Crystal Display. J. Nanosci. Nanotechnol. 2014, 14, 8609–8614. [Google Scholar] [CrossRef] [PubMed]
- Brochard, F.; de Gennes, P.G. Theory of magnetic suspensions in liquid crystals. J. Phys. 1970, 31, 691–708. [Google Scholar] [CrossRef] [Green Version]
- Popov, V.A.; Gilev, V.G.; Zakhlevnykh, A.N. Weak Coupling Effect on the Magnetic Freedericksz Transition in a Ferronematic Liquid Crystal. Phys. Solid State 2018, 60, 1462–1467. [Google Scholar] [CrossRef]
- Kopčanský, P.; Tomašovičová, N.; Timko, M.; Závišová, V.; Tomčo, L.; Jadżyn, J. The Sensitivity of Ferronematics to External Magnetic Fields. J. Phys. Conf. Ser. 2010, 200, 072055. [Google Scholar] [CrossRef]
- Burylov, S.V.; Raikher, Y.L. Magnetic Fredericksz Transition in a Ferronematic. J. Magn. Magn. Mater. 1993, 122, 62–65. [Google Scholar] [CrossRef]
- Burylov, S.V.; Zakhlevnykh, A.N. Analytical description of 2D magnetic Freedericksz transition in a rectangular cell of a nematic liquid crystal. Eur. Phys. J. E 2016, 39, 65. [Google Scholar] [CrossRef]
- Makarov, D.V.; Zakhlevnykh, A.N. Tricritical phenomena at the Fréedericksz transition in ferronematic liquid crystals. Phys. Rev. E 2010, 81, 051710. [Google Scholar] [CrossRef]
- Zakhlevnykh, A.N.; Petrov, D.A. Magnetic field induced orientational transitions in soft compensated ferronematics. Phase Transit. 2014, 87, 1–18. [Google Scholar] [CrossRef]
- Zakhlevnykh, A.N.; Petrov, D.A. Orientational Transitions in Antiferromagnetic Liquid Crystals. Phys. Solid State 2016, 58, 1906–1915. [Google Scholar] [CrossRef]
- Zakutanská, K.; Lacková, V.; Tomašovičová, N.; Burylov, S.; Burylova, N.; Skosar, V.; Juríková, A.; Vojtko, M.; Jadżyn, J.; Kopčanský, P. Nanoparticle’s size, surfactant and concentration effects on stability and isotropic-nematic transition in ferronematic liquid crystal. J. Mol. Liq. 2019, 289, 111125. [Google Scholar] [CrossRef]
- Studenyak, I.P.; Kovalchuk, O.V.; Pogodin, A.I.; Poberezhets, S.I.; Studenyak, V.I.; Poberezhets, I.I.; Lackova, V.; Kopčanský, P.; Timko, M. Influence of cation substitution on dielectric properties and electric conductivity of 6CB liquid crystal with Me7GeS5I (me = Ag, Cu) superionic nanoparticles. Mol. Cryst. Liq. Cryst. 2020, 702, 21–29. [Google Scholar] [CrossRef]
- Burylov, S.V.; Raikher, Y.L. Molecular properties of ferronematic caused by orientational interactions on the particle surface. II. Behavior of real ferronematics in external fields. Mol. Cryst. Liq. Cryst. 1995, 258, 123–141. [Google Scholar] [CrossRef]
- Bradshaw, M.J.; Raynes, E.P.; Bunning, J.D.; Faber, T.E. The Frank constants of some nematic liquid crystals. J. Phys. 1985, 46, 1513–1520. [Google Scholar] [CrossRef]
- Zakhlevnykh, A.N.; Petrov, D.A. Weak coupling effects and re-entrant transitions in ferronematic liquid crystals. J. Mol. Liq. 2014, 198, 223–233. [Google Scholar] [CrossRef]
- Tomašovičová, N.; Kopčanský, P.; Éber, N. Anisotropy Research: New Developments; Nova Science: Hauppauge, NY, USA, 2012; Chapter 11; pp. 245–276. [Google Scholar]
(V) | (T) | |||||
---|---|---|---|---|---|---|
10 nm | 20 nm | 30 nm | 10 nm | 20 nm | 30 nm | |
0.79 | 0.79 | 0.79 | 0.16 | 0.16 | 0.15 | |
0.78 | 0.78 | 0.76 | 0.15 | 0.15 | 0.14 | |
0.63 | 0.26 | 0.54 | 0.12 | 0.05 | 0.09 |
d (nm) | (T) | b | ||||
---|---|---|---|---|---|---|
0.16 | 3.14 | 126 | 0.022 | 3.88 | ||
10 nm | 0.15 | 2.94 | 629 | 0.60 | 4.53 | |
0.12 | 2.36 | 1258 | 2.16 | 4.67 | ||
0.16 | 3.14 | 408 | 0.022 | 4.40 | ||
20 nm | 0.15 | 2.94 | 2040 | 0.60 | 4.74 | |
0.05 | 0.98 | 4080 | 4.44 | 4.81 | ||
0.15 | 2.94 | 472 | 0.60 | 4.45 | ||
30 nm | 0.14 | 2.75 | 2362 | 1.16 | 4.76 | |
0.09 | 1.77 | 4725 | 3.37 | 4.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakutanská, K.; Petrov, D.; Kopčanský, P.; Węgłowska, D.; Tomašovičová, N. Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration. Materials 2021, 14, 3096. https://doi.org/10.3390/ma14113096
Zakutanská K, Petrov D, Kopčanský P, Węgłowska D, Tomašovičová N. Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration. Materials. 2021; 14(11):3096. https://doi.org/10.3390/ma14113096
Chicago/Turabian StyleZakutanská, Katarína, Danil Petrov, Peter Kopčanský, Dorota Węgłowska, and Natália Tomašovičová. 2021. "Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration" Materials 14, no. 11: 3096. https://doi.org/10.3390/ma14113096
APA StyleZakutanská, K., Petrov, D., Kopčanský, P., Węgłowska, D., & Tomašovičová, N. (2021). Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration. Materials, 14(11), 3096. https://doi.org/10.3390/ma14113096