Tuning of the Structure and Magnetocaloric Effect of Mn1−xZrxCoGe Alloys (Where x = 0.03, 0.05, 0.07, and 0.1)
Abstract
:1. Introduction
2. Sample Preparation and Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications; Institute of Physics Series in Condensed Matter Physics: London, UK, 2003. [Google Scholar]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Magnetocaloric effect and magnetic refrigation. J. Magn. Magn. Mater. 1999, 200, 44–56. [Google Scholar] [CrossRef]
- Yue, M.; Zhang, J.; Zeng, H.; Chen, H.; Liu, X.B. Magnetocaloric effect in Gd5Si2Ge2/Gd composite materials. J. Appl. Phys. 2006, 99, 08Q104. [Google Scholar] [CrossRef]
- Fujita, A.; Akamatsu, Y.; Fukamichi, K. Itinerant electron metamagnetic transition in La(FexSi1−x)13 intermetallic compounds. J. Appl. Phys. 1999, 85, 4756–47568. [Google Scholar] [CrossRef]
- Gebara, P.; Kovac, J. The influence of partial substitution of La by Dy on structure and thermomagnetic properties of the LaFe11.0Co0.7Si1.3 alloy. J. Magn. Magn. Mater. 2018, 454, 298–303. [Google Scholar] [CrossRef]
- Zhong, W.; Cheng, W.; Ding, W.P.; Zhang, N.; Du, Y.W.; Yan, Q.J. Magnetocaloric properties of Na-Substituted perovskite-Type magnese oxides. Solid State Commun. 1998, 106, 55–58. [Google Scholar] [CrossRef]
- He, A.; Svitlyk, V.; Mozharivskyj, Y. Synthetic Approach for (Mn,Fe)2(Si,P) Magnetocaloric Materials: Purity, Structural, Magnetic, and Magnetocaloric Properties. Inorg. Chem. 2017, 56, 2827–2833. [Google Scholar] [CrossRef]
- Koller, M.; Chraska, T.; Cinert, J.; Heczko, O.; Kopecek, J.; Landa, M.; Musalek, R.; Rames, M.; Siner, H.; Strasky, J.; et al. Mehcanical and magnetic properties of semi-Heusler/light-metal composites consolidated by spark plasma sintering. Mater. Des. 2017, 126, 351–357. [Google Scholar] [CrossRef]
- Kuang, Y.; Yang, B.; Hao, X.; Xu, H.; Li, Z.; Yan, H.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L. Gigant low field magnetocaloric effect near room temperature in isostructurally alloyed MnNiGe-FeCoGe systems. J. Magn. Magn. Mater. 2020, 506, 166782. [Google Scholar] [CrossRef]
- Duong, N.P.; Hung, L.T.; Hien, T.D.; Thuy, N.P.; Trung, N.T.; Bruck, E. Magnetic properties of half-metallic semi Heusler Co1−xCu xMnSb compounds. J. Magn. Magn. Mater. 2007, 311, 605–608. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Hu, H.; Cui, Y.; Liu, G.; Chen, J.; Wu, G.; Sui, Y.; Qian, Z.; Li, Z.; et al. A new semi-Heusler ferromagnet NiFeSb: Electronic structure, magnetism and transport properties. Solid State Commun. 2003, 128, 107–111. [Google Scholar] [CrossRef]
- Pierre, J.; Kaczmarska, K.; Tobola, J.; Skolozdra, R.V.; Melnyk, G.A. Location of Mn 3d states in semi-Heusler compounds. Physica B 1999, 261, 841–842. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, J.; Yuan, H.K.; Kuang, A.L.; Chen, H. Effect of Nb doping on electronic and magnetic properties of half-metallic CoMnSb semi-Heusler compound from first-principles calculations. Phys. Status Solid B 2010, 247, 945–949. [Google Scholar] [CrossRef]
- Heinz, S.; Balke, B.; Jakob, G. Hole localization in thermoelectric half-Heusler (Zr0.5Hf0.5)Co(Sb1−xSnx) thin films. Thin Solid Film 2019, 692, 137581. [Google Scholar] [CrossRef]
- Bruck, E.; Ilyn, M.; Tishin, A.M.; Tegus, O. Magnetocaloric effects in MnFeP1−xAsx-based compounds. J. Magn. Magn. Mater. 2005, 291, 8–13. [Google Scholar] [CrossRef]
- Trung, N.T.; Zhang, L.; Caron, L.; Buschow, K.H.J.; Bruck, E. Gigant magnetocaloric effect by tailoring the phase transitions. Appl. Phys. Lett. 2010, 96, 172504. [Google Scholar] [CrossRef]
- Morán-López, J.; Rodriguez-Alba, R.; Aguilera-Granja, F. Modeling the magnetic properties of Heusler alloys. J. Magn. Magn. Mater. 1994, 131, 417–426. [Google Scholar] [CrossRef]
- Beloufa, A.; Bakhti, B.; Bouguenna, D.; Chellali, M.R. Computational investigation of CrFeZ [Z = Si, Sn and Ge] half-Heusler compounds ferromagnets. Phys. B Condens. Matter 2019, 563, 50–55. [Google Scholar] [CrossRef]
- Graf, T.; Casper, F.; Winterlik, J.; Balke, B.; Fecher, G.H.; Felser, C. Crystal Structure of New Heusler Compounds. Z. Anorg. Allg. Chem. 2009, 635, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Hohl, H.; Ramirez, A.P.; Goldmann, C.; Ernst, G.; Wölfing, B.; Bucher, E. New Compounds with MgAgAs-type structure: NbIrSn and NbIrSb. J. Phys. Condens. Matter. 1998, 10, 7843. [Google Scholar] [CrossRef]
- Gębara, P.; Śniadecki, Z. Structure, magnetocaloric properties and thermodynamic modeling of enthalpies of formation of (Mn,X)-Co-Ge (X=Zr, Pd) alloys. J. Alloys Compd. 2019, 796, 153–159. [Google Scholar] [CrossRef]
- Qian, F.; Zhu, Q.; Miao, X.; Fan, J.; Zhong, G.; Yang, H. Tailoring the magneto-structural coupling in Mn1−xZrxCoGe alloys. J. Mater. Sci. 2021, 56, 1472–1480. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. PowderCell 2.0 for Windows. Powder Diffr. 1998, 13, 256. [Google Scholar]
- Bażela, W.; Szytuła, A.; Todorović, J.; Tomkowicz, Z.; Zieba, A. Crystal and magnetic structure of NiMnGe. Phys. Status Solid A 1976, 38, 721–729. [Google Scholar] [CrossRef]
- Johnson, V. Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides. Inorg. Chem. 1975, 14, 1117–1120. [Google Scholar] [CrossRef]
- Li, G.J.; Liu, E.K.; Zhang, H.G.; Zhang, Y.J.; Chen, J.L.; Wang, W.H.; Zhang, H.W.; Wu, G.H.; Yu, S.Y. Phase diagram, ferromagnetic martenstic transformation and magnetoresposive properties of Fe-doped MnCoGe alloys. J. Magn. Magn. Mater. 2013, 332, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Gschneidner, K.A.J.; Mudryk, Y.; Pecharsky, V.K. On the nature of the magnetocaloric effect of the first-order magnetostructural transition. Scr. Mater. 2012, 67, 572–577. [Google Scholar] [CrossRef]
- Hauser, J.J.; Waszczak, J.V. Spin-glass transition in MnO. Phys. Rev. B 1984, 30, 5167–5171. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneider, K.A. Magnetocaloric effect from indirect measurements: Magnetization and heat capacity. Jr. J. Appl. Phys. 1999, 86, 565–575. [Google Scholar] [CrossRef]
- Wood, M.E.; Potter, W.H. General analysis of magnetic refrigeration and its optimization using a new concept: Maximization of refrigerant capacity. Cryogenics 1985, 25, 667–683. [Google Scholar] [CrossRef]
- Law, J.Y.; Franco, V.; Moreno-Ramírez, L.M.; Conde, A.; Karpenkov, D.Y.; Radulov, I.; Skokov, K.P.; Gutfleisch, O. A quantitative criterion for determining the order of Magnetic phase transitions using the magnetocaloric effect. Nat. Commun. 2018, 9, 2680. [Google Scholar] [CrossRef]
- Franco, V.; Conde, A.; Provenzano, V.; Shull, R. Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X=Al, Cu, Ga, Mn,Fe,Co). J. Magn. Magn. Mater. 2010, 322, 218–223. [Google Scholar] [CrossRef]
- Skokov, K.P.; Müller, K.-H.; Moore, J.D.; Liu, J.; Karpenkov, Y.A.; Krautz, M.; Gutfleisch, O. Influence of thermal hysteresis and field cycling on themagnetocaloric effect in LaFe11.6Si1.4. J. Alloys Compd. 2013, 552, 310–317. [Google Scholar] [CrossRef]
- Morrison, K.; Sandeman, K.G.; Cohen, L.F.; Sasso, C.P.; Basso, V.; Barcza, A.; Katter, M.; Moore, J.D.; Skokov, K.P.; Gutfleisch, O. Evaluation of the reliability of the measurement of key magnetocaloric properties: A round robin study of La(Fe,Si, Mn)Hdconducted by the SSEEC consortium of European laboratories. Int. J. Refrig. 2012, 35, 1528–1536. [Google Scholar] [CrossRef] [Green Version]
- Gębara, P.; Hasiak, M. Determination of Phase Transition and Critical Behavior of the As-Cast GdGeSi-(X) Type Alloys (Where X = Ni, Nd and Pr). Materials 2021, 14, 185. [Google Scholar] [CrossRef]
Alloy | Crystalline Phase | Lattice Parameter [Å] ± 0.001 | Volume Fraction [%] |
---|---|---|---|
Mn0.97Zr0.03CoGe | hex Ni2In- type | a = 4.072 | 93 |
c = 5.282 | |||
ort NiTiSi- type | a = 5.939 | 7 | |
b = 3.825 | |||
c = 7.052 | |||
Mn0.95Zr0.05CoGe | hex Ni2In- type | a = 4.073 | 92 |
c = 5.283 | |||
ort NiTiSi- type | a = 5.940 | 8 | |
b = 3.825 | |||
c = 7.053 | |||
Mn0.93Zr0.0.07CoGe | hex Ni2In- type | a = 4.079 | 82 |
c = 5.284 | |||
ort NiTiSi- type | a = 5.940 | 18 | |
b = 3.827 | |||
c = 7.054 | |||
Mn0.9Zr0.1CoGe | hex Ni2In- type | a = 4.081 | 72 |
c = 5.285 | |||
ort NiTiSi- type | a = 5.941 | 28 | |
b = 3.827 | |||
c = 7.055 |
Alloy | Δ(μ0H) [T] | ΔSM [J (kg K)−1] | RC [J kg−1] |
---|---|---|---|
Mn0.97Zr0.03CoGe | 1 | 1.38 | 29 |
2 | 3.18 | 67 | |
3 | 4.41 | 92 | |
4 | 5.51 | 139 | |
5 | 6.93 | 195 | |
Mn0.95Zr0.05CoGe | 1 | 2.64 | 37 |
2 | 6.34 | 99 | |
3 | 8.71 | 174 | |
4 | 12.02 | 296 | |
5 | 13.42 | 425 | |
Mn0.93Zr0.07CoGe | 1 | 1.13 | 41 |
2 | 1.73 | 71 | |
3 | 2.46 | 114 | |
4 | 3.33 | 165 | |
5 | 3.96 | 246 | |
Mn0.9Zr0.1CoGe | 1 | 0.66 | 33 |
2 | 1.35 | 78 | |
3 | 1.97 | 121 | |
4 | 2.42 | 177 | |
5 | 2.94 | 219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutynia, K.; Gębara, P. Tuning of the Structure and Magnetocaloric Effect of Mn1−xZrxCoGe Alloys (Where x = 0.03, 0.05, 0.07, and 0.1). Materials 2021, 14, 3129. https://doi.org/10.3390/ma14113129
Kutynia K, Gębara P. Tuning of the Structure and Magnetocaloric Effect of Mn1−xZrxCoGe Alloys (Where x = 0.03, 0.05, 0.07, and 0.1). Materials. 2021; 14(11):3129. https://doi.org/10.3390/ma14113129
Chicago/Turabian StyleKutynia, Karolina, and Piotr Gębara. 2021. "Tuning of the Structure and Magnetocaloric Effect of Mn1−xZrxCoGe Alloys (Where x = 0.03, 0.05, 0.07, and 0.1)" Materials 14, no. 11: 3129. https://doi.org/10.3390/ma14113129
APA StyleKutynia, K., & Gębara, P. (2021). Tuning of the Structure and Magnetocaloric Effect of Mn1−xZrxCoGe Alloys (Where x = 0.03, 0.05, 0.07, and 0.1). Materials, 14(11), 3129. https://doi.org/10.3390/ma14113129