The Formation of Cr-Al Spinel under a Reductive Atmosphere
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Samples
2.2. Physicochemical Characterization
2.3. Theoretical Calculations
3. Results and Discussion
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirai, T.; Watanabe, H.; Fuji, M.; Takahashi, M. Structural Properties and Surface Characteristics on Aluminum Oxide Powders. Annu. Rep. Adv. Ceram. Res. Cent. Nagoya Inst. Technol. 2009, 9, 23–31. [Google Scholar]
- Abyzov, A.M. Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3. Refract. Ind. Ceram. 2019, 60, 24–32. [Google Scholar] [CrossRef]
- Trueba, M.; Trasatti, S.P. γ-alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem. 2005, 2005, 3393–3403. [Google Scholar] [CrossRef]
- Chu, T.P.M.; Nguyen, N.T.; Vu, T.L.; Dao, T.H.; Dinh, L.C.; Nguyen, H.L.; Hoang, T.H.; Le, T.S.; Pham, T.D. Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal. Materials 2019, 12, 450. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, W.; Bian, X.; Wu, Y. Synthesis and characterization of amorphous Al2O3 and γ-Al2O3 by spray pyrolysis. Green Process. Synth. 2016, 5, 305–310. [Google Scholar] [CrossRef]
- Digne, M.; Sautet, P.; Raybaud, P.; Toulhoat, H.; Artacho, E. Structure and stability of aluminum hydroxides: A theoretical study. J. Phys. Chem. B 2002, 106, 5155–5162. [Google Scholar] [CrossRef]
- Karabulut, Ş.; Gökmen, U.; Çinici, H. Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles. Compos. Part B Eng. 2016, 93, 43–55. [Google Scholar] [CrossRef]
- Yang, K.; Zhou, X.; Zhao, H.; Tao, S. Microstructure and mechanical properties of Al2O3–Cr2O3 composite coatings produced by atmospheric plasma spraying. Surf. Coat. Technol. 2011, 206, 1362–1371. [Google Scholar] [CrossRef]
- Cai, K.F.; McLachlan, D.S.; Axen, N.; Manyatsa, R. Preparation, microstructures and properties of Al2O3-TiC composites. Ceram. Int. 2002, 28, 217–222. [Google Scholar] [CrossRef]
- Tuan, W.H.; Chen, R.Z.; Wang, T.C.; Cheng, C.H.; Kuo, P.S. Mechanical properties of Al2O3/ZrO2 composites. J. Eur. Ceram. Soc. 2002, 22, 2827–2833. [Google Scholar] [CrossRef]
- Hirata, T.; Morimoto, T.; Deguchi, A.; Uchida, N. Corrosion resistance of alumina-chromia ceramic materials against molten slag. Mater. Trans. 2002, 43, 2561–2567. [Google Scholar] [CrossRef] [Green Version]
- Kafkaslıoğlu Yıldız, B.; Yılmaz, H.; Tür, Y.K. Evaluation of mechanical properties of Al2O3–Cr2O3 ceramic system prepared in different Cr2O3 ratios for ceramic armour components. Ceram. Int. 2019, 45, 20575–20582. [Google Scholar] [CrossRef]
- Kim, K.J.; Chang, C.H.; Ahn, H.G. The effect of zinc oxide addition to alumina-supported gold catalyst in low temperature carbon monoxide oxidation. J. Nanosci. Nanotechnol. 2015, 15, 660–664. [Google Scholar] [CrossRef]
- Eklund, P.; Sridharan, M.; Sillassen, M.; Bøttiger, J. α-Cr2O3 template-texture effect on α-Al2O3 thin-film growth. Thin Solid Films 2008, 516, 7447–7450. [Google Scholar] [CrossRef] [Green Version]
- Bosi, F.; Hatert, F.; Hålenius, U.; Pasero, M.; Miyawaki, R.; Mills, S.J. On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions. Mineral. Mag. 2019, 83, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Zhao, H.; Yu, J.; Zhang, H.; Gao, H.; Chen, Q. Crystal structure and properties of Al2O3–Cr2O3 solid solutions with different Cr2O3 contents. Ceram. Int. 2018, 44, 1356–1361. [Google Scholar] [CrossRef]
- Sako, E.Y.; Braulio, M.A.L.; Zinngrebe, E.; Van Der Laan, S.R.; Pandolfelli, V.C. Fundamentals and applications on in situ spinel formation mechanisms in Al2O3-MgO refractory castables. Ceram. Int. 2012, 38, 2243–2251. [Google Scholar] [CrossRef]
- Ping, L.R.; Azad, A.M.; Dung, T.W. Magnesium aluminate (MgAl2O4) spinel produced via self-heat-sustained (SHS) technique. Mater. Res. Bull. 2001, 36, 1417–1430. [Google Scholar] [CrossRef] [Green Version]
- Bosi, F.; Biagioni, C.; Pasero, M. Nomenclature and classification of the spinel supergroup. Eur. J. Mineral. 2019, 31, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Rossi, R.C.; Fulrath, R.M. Epitaxial Growth of Spinel by Reaction in the Solid State. J. Am. Ceram. Soc. 1963, 46, 145–149. [Google Scholar] [CrossRef]
- CARTER, R.E. Mechanism of Solid-state Reaction Between Magnesium Oxide and Aluminum Oxide and Between Magnesium Oxide and Ferric Oxide. J. Am. Ceram. Soc. 1961, 44, 116–120. [Google Scholar] [CrossRef]
- NAVIAS, L. Preparation and Properties of Spinel Made by Vapor Transport and Diffusion in the System MgO-Al2O3. J. Am. Ceram. Soc. 1961, 44, 434–446. [Google Scholar] [CrossRef]
- Quirós, M.; Gražulis, S.; Girdzijauskaitė, S.; Merkys, A.; Vaitkus, A. Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. J. Cheminform. 2018, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Boultif, A.; Loueer, D. Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Crystallogr. 1991, 24, 987–993. [Google Scholar] [CrossRef]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1360. [Google Scholar] [CrossRef]
- Dovesi, R.; Saunders, V.R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C.M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N.M.; Bush, I.J.; et al. CRYSTAL 14: User’s Manual; University of Turin; Turin, Italy, 2016; pp. 1–382. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Vilela Oliveira, D.; Laun, J.; Peintinger, M.F.; Bredow, T. BSSE-correction scheme for consistent gaussian basis sets of double—and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2019, 39, 1285–1290. [Google Scholar] [CrossRef]
- Kvitka, N.G.; Zorina, S.S. Refinement of the structure of the spinel Al2MgO4. Sov. Phys.Crystallogr. 1969, 13, 599–600. [Google Scholar]
- Edlmayr, V.; Pohler, M.; Letofsky-Papst, I.; Mitterer, C. Microstructure and thermal stability of corundum-type (Al0.5Cr0.5)2O3 solid solution coatings grown by cathodic arc evaporation. Thin Solid Films 2013, 534, 373–379. [Google Scholar] [CrossRef]
- Bondioli, F.; Ferrari, A.M.; Leonelli, C.; Manfredini, T.; Linati, L. Reaction Mechanism in Alumina/Chromia (Al2O3–Cr2O3) Solid Solutions Obtained by Coprecipitation. J. Am. Ceram. Soc. 2000, 83, 2036–2040. [Google Scholar] [CrossRef]
- Mahat, A.M.; Mastuli, M.S.; Kamarulzaman, N. Influence of annealing temperature on the phase transformation of Al2O3. AIP Conf. Proc. 2016, 1711, 050001. [Google Scholar] [CrossRef] [Green Version]
- Gagné, O.C.; Hawthorne, F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2015, 71, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Bosi, F.; Andreozzi, G.B. Chromium influence on Mg-Al intracrystalline exchange in spinels and geothermometric implications. Am. Mineral. 2017, 102, 333–340. [Google Scholar] [CrossRef]
- Cámara, F.; Bindi, L.; Pagano, A.; Pagano, R.; Gain, S.E.M.; Griffin, W.L. Dellagiustaite: A novel natural spinel containing V2+. Minerals 2019, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Hanson, B.; Jones, J.H. The systematics of Cr3+ and Cr2+ partitioning between olivine and liquid in the presence of spinel. Am. Mineral. 1998, 83, 669–684. [Google Scholar] [CrossRef]
- Liu, C.; Hystad, G.; Golden, J.J.; Hummer, D.R.; Downs, R.T.; Morrison, S.M.; Ralph, J.P.; Hazen, R.M. Chromium mineral ecology. Am. Mineral. 2017, 102, 612–619. [Google Scholar] [CrossRef]
Peak (012) | 2θ (°) | a (Å) | c (Å) |
---|---|---|---|
Cr2O3 | 24.732 | 4.960 (1) | 13.598 (4) |
(Al,Cr)2O3 (~80% Cr2O3) | 24.786 | 4.900 (1) | 13.435 (3) |
α-Al2O3 | 25.566 | 4.760 (1) | 12.997 (3) |
Crystal Data | |||||
---|---|---|---|---|---|
Experimental | Theoretical | ||||
Crystal System | Space Group | a (Å) | Crystal System | Space Group | a (Å) |
Cubic | Fd-3m | 8.22 (3) | Cubic | Fd-3m | 8.106 (2) |
(hkl) | dhkl | (hkl) | dhkl | ||
(111) | 4.75 | (111) | 4.680 | ||
(022) | 2.91 | (022) | 2.866 | ||
(131) | 2.48 | (131) | 2.444 | ||
- | - | (222) | 2.340 | ||
(040) | 2.16 | (040) | 2.206 | ||
- | - | (133) | 1.860 | ||
- | - | (242) | 1.655 | ||
- | - | (151) | 1.560 | ||
(044) | 1.45 | (044) | 1.433 | ||
- | - | (153) | 1.370 | ||
- | - | (244) | 1.351 |
Temperature, °C | Phase Composition | Crystallite Size, nm * | Relative Concentration, % |
---|---|---|---|
600 | α-Cr2O3 | 12 | 100 |
800 | α-Al2O3 | ~5 | 28 |
CrAlO3 | 50 | 72 | |
1000 | α-Al2O3 | 15 | 45 |
χ-Al2O3 | 11 | 7 | |
γ-Al2O3 | 19 | 5 | |
α-Cr2O3 | 49 | 43 | |
1150 | α-Al2O3 | 29 | 55 |
α-Cr2O3 | 20 | 21 | |
CrAl2O4 | 27 | 24 | |
1300 | α-Al2O3 | 40 | 85 |
CrAl2O4 | 125 | 15 | |
1450 | α-Al2O3 | 54 | 94 |
CrAl2O4 | 25 | 3 | |
Cr | 60 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shtyka, O.; Maniukiewicz, W.; Ciesielski, R.; Kedziora, A.; Shatsila, V.; Sierański, T.; Maniecki, T. The Formation of Cr-Al Spinel under a Reductive Atmosphere. Materials 2021, 14, 3218. https://doi.org/10.3390/ma14123218
Shtyka O, Maniukiewicz W, Ciesielski R, Kedziora A, Shatsila V, Sierański T, Maniecki T. The Formation of Cr-Al Spinel under a Reductive Atmosphere. Materials. 2021; 14(12):3218. https://doi.org/10.3390/ma14123218
Chicago/Turabian StyleShtyka, Oleksandr, Waldemar Maniukiewicz, Radoslaw Ciesielski, Adam Kedziora, Viktar Shatsila, Tomasz Sierański, and Tomasz Maniecki. 2021. "The Formation of Cr-Al Spinel under a Reductive Atmosphere" Materials 14, no. 12: 3218. https://doi.org/10.3390/ma14123218
APA StyleShtyka, O., Maniukiewicz, W., Ciesielski, R., Kedziora, A., Shatsila, V., Sierański, T., & Maniecki, T. (2021). The Formation of Cr-Al Spinel under a Reductive Atmosphere. Materials, 14(12), 3218. https://doi.org/10.3390/ma14123218