Laser Patterning of Aligned Carbon Nanotubes Arrays: Morphology, Surface Structure, and Interaction with Terahertz Radiation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of the Laser Power
3.2. THz Response of the Arrays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawler, N.B.; Ho, D.; Evans, C.W.; Wallaceb, V.P.; Iyer, K.S. Convergence of terahertz radiation and nanotechnology. J. Mater. Chem. C 2020, 8, 10942–10955. [Google Scholar] [CrossRef]
- Rosenau da Costa, M.; Kibis, O.V.; Portnoi, M.E. Carbon nanotubes as a basis for terahertz emitters and detectors. Microelectronics J. 2009, 40, 776–778. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Jornet, J.M. Electromagnetic wireless nanosensor networks. Nano Commun. Netw. 2010, 1, 3–19. [Google Scholar] [CrossRef]
- Wang, R.; Xie, L.; Hameed, S.; Wang, C.; Ying, Y. Mechanisms and applications of carbon nanotubes in terahertz devices: A review. Carbon 2018, 132, 42–58. [Google Scholar] [CrossRef]
- Batrakov, K.G.; Kibis, O.V.; Kuzhir, P.P.; Rosenau da Costa, M.; Portnoid, M.E. Terahertz processes in carbon nanotubes. J. Nanophotonics 2010, 4, 041665. [Google Scholar]
- Portnoi, M.E.; Kibisb, O.V.; Rosenau da Costa, M. Terahertz applications of carbon nanotubes. Superlattices Microstruct. 2008, 43, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, Y.; Hu, Y.; Kang, L.; Zhang, S.; Xie, H.; Liu, D.; Zhao, Q.; Li, Q.; Zhang, J. State of the art of single-walled carbon nanotube synthesis on surfaces. Adv. Mater. 2014, 26, 5898–5922. [Google Scholar] [CrossRef]
- Das, D.; Roy, A. Synthesis of diameter controlled multiwall carbon nanotubes by microwave plasma-CVD on low-temperature and chemically processed Fe nanoparticle catalysts. Appl. Surf. Sci. 2020, 515, 146043. [Google Scholar] [CrossRef]
- Dini, Y.; Faure-Vincent, J.; Dijon, J. How to overcome the electrical conductivity limitation of carbon nanotube yarns drawn from carbon nanotube arrays. Carbon 2019, 144, 301–311. [Google Scholar] [CrossRef]
- Kuramochiab, E. Manipulating and trapping light with photonic crystals from fundamental studies to practical applications. J. Mater. Chem. C 2016, 4, 11032–11049. [Google Scholar] [CrossRef]
- Corletto, A.; Shapter, J.G. Nanoscale patterning of carbon nanotubes: Techniques, applications, and future. Adv. Sci. 2021, 8, 2001778. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Papadopoulos, C.; Xu, J.M. Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 1999, 75, 367–369. [Google Scholar] [CrossRef]
- Su, J.S.; Lee, J.S. Highly ordered two-dimensional carbon nanotube arrays. Appl. Phys. Lett. 1999, 75, 2047. [Google Scholar]
- Teo, K.B.K.; Chhowalla, M.; Amaratunga, G.A.J.; Milne, W.I.; Hasko, D.G.; Pirio, G.; Legagneux, P.; Wyczisk, F.; Pribat, D. Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 2001, 79, 1534–1536. [Google Scholar] [CrossRef] [Green Version]
- Butler, T.P.; Rashid, I.; Montelongo, Y.; Amaratungaa, G.A.J.; Butt, H. Optical bandgap modelling from the structural arrangement of carbon nanotubes. Nanoscale 2018, 10, 10683–10690. [Google Scholar] [CrossRef] [Green Version]
- Rajasekharan, R.; Butt, H.; Dai, Q.; Wilkinson, T.D.; Amaratunga, G.A.J. Can nanotubes make a lens array? Adv. Mater. 2012, 24, OP170–OP173. [Google Scholar] [CrossRef]
- Elmera, J.W.; Yaglioglua, O.; Schaefferb, R.D.; Kardosb, G.; Derkach, O. Direct patterning of vertically aligned carbon nanotube arrays to 20 μm pitch using focused laser beam micromachining. Carbon 2012, 50, 4114–4122. [Google Scholar] [CrossRef]
- Labunov, V.; Prudnikava, A.; Bushuk, S.; Filatov, S.; Shulitski, B.; Tay, B.K.; Shaman, Y.; Basaev, A. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles. Nanoscale Res. Lett. 2013, 8, 375. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Yin, H.; Li, Q. Ablation and patterning of carbon nanotube film by femtosecond laser irradiation. Appl. Sci. 2019, 9, 3045. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.-W.; So, H.-M.; Cho, S.-H.; Chang, W.S. Effect of polarization of ultrafast laser irradiation on carbon nanotube film. Thin Solid Films 2013, 546, 69–72. [Google Scholar] [CrossRef]
- Choi, S.B.; Byeon, C.C.; Park, D.J.; Jeong, M.S. Polarization-selective alignment of a carbon nanotube film by using femtosecond laser ablation. J. Korean Phys. Soc. 2016, 68, 210–214. [Google Scholar] [CrossRef]
- Langheinrich, D.; Dörfler, S.; Althues, H.; Kaskel, S.; Lasagni, A. Rapid and scalable method for direct and indirect microstructuring of vertical aligned carbon nanotubes. Surf. Coat. Technol. 2012, 206, 4808–4813. [Google Scholar] [CrossRef]
- Cheong, F.C.; Lim, K.Y.; Sow, C.H.; Lin, J.; Ong, C.K. Large area patterned arrays of aligned carbon nanotubes via laser trimming. Nanotechnology 2003, 14, 433–437. [Google Scholar] [CrossRef]
- Gerasimenko, A.Y.; Kitsyuk, E.P.; Kuksin, A.V.; Ryazanov, R.M.; Savitskiy, A.I.; Savelyev, M.S.; Pavlov, A.A. Influence of laser structuring and barium nitrate treatment on morphology and electrophysical characteristics of vertically aligned carbon nanotube arrays. Diamond Relat. Mater. 2019, 96, 104–111. [Google Scholar] [CrossRef]
- Lasagni, A.; Cross, R.; Graham, S.; Das, S. The fabrication of high aspect ratio carbon nanotube arrays by direct laser interference patterning. Nanotechnology 2009, 20, 245305. [Google Scholar] [CrossRef] [PubMed]
- Kichambare, P.D.; Chen, L.C.; Wang, C.T.; Ma, K.J.; Wu, C.T.; Chen, K.H. Laser irradiation of carbon nanotubes. Mater. Chem. Phys. 2001, 72, 218–222. [Google Scholar] [CrossRef]
- Gbordzoe, S.; Yarmolenko, S.; Kanakaraj, S.; Haase, M.R.; Alvarez, N.T.; Borgemenke, R.; Adusei, P.K.; Shanov, V. Effects of laser cutting on the structural and mechanical properties of carbon nanotube assemblages. Mater. Sci. Eng. B 2017, 223, 143–152. [Google Scholar] [CrossRef]
- Lim, K.Y.; Sow, C.H.; Lin, J.; Cheong, F.C.; Shen, Z.X.; Thong, J.T.L.; Chin, K.C.; Wee, A.T.S. Laser pruning of carbon nanotubes as a route to static and movable structures. Adv. Mater. 2003, 15, 300–303. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Yue, K.-T.; Zhang, S.-L.; Wu, X.; Zi, J.; Shi, Z.; Gu, Z. Effects of intense laser irradiation on Raman intensity features of carbon nanotubes. Phys. Rev. B 2002, 65, 073401. [Google Scholar] [CrossRef]
- Lim, Z.H.; Lee, A.; Zhu, Y.; Lim, K.-Y.; Sow, C.-H. Sustained laser induced incandescence in carbon nanotubes for rapid localized heating. Appl. Phys. Lett. 2009, 94, 073106. [Google Scholar] [CrossRef]
- Mialichi, J.R.; Brasil, M.J.S.P.; Iikawa, F.; Veríssimo, C.; Moshkalev, S.A. Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy. J. Appl. Phys. 2013, 114, 024904. [Google Scholar] [CrossRef]
- Kumanek, B.; Janas, D. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar] [CrossRef] [Green Version]
- Vanab, H.H.; Badurab, K.; Zhang, M. Laser-induced transformation of freestanding carbon nanotubes into graphene nanoribbons. Nanoscale 2015, 5, 44183–44191. [Google Scholar]
- Momma, C.; Chichkov, B.N.; Nolte, S.; Alvensleben, F.; Tiinnermann, A.; Welling, H.; Wellegehausen, B. Short-pulse laser ablation of solid targets. Opt. Commun. 1996, 129, 134–142. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Bulusheva, L.G.; Kudashov, A.G.; Belavin, V.V.; Komogortsev, S.V. Arrays of carbon nanotubes aligned perpendicular to the substrate surface: Anisotropy of structure and properties. Nanotechnol. Russia 2008, 3, 191–200. [Google Scholar] [CrossRef]
- Gorokhov, G.V.; Bychanok, D.S.; Kuzhir, P.P.; Gorodetskiy, D.V.; Kurenya, A.G.; Sedelnikova, O.V.; Bulusheva, L.G.; Okotrub, A.V. Creation of metasurface from vertically aligned carbon nanotubes as versatile platform for ultra-light THz components. Nanotechnology 2020, 31, 255703. [Google Scholar] [CrossRef] [PubMed]
- Gorodetskiy, D.V.; Kurenya, A.G.; Gusel’nikov, A.V.; Baskskova, K.I.; Smirnov, D.A.; Arkhipov, V.E.; Bulusheva, L.G.; Okotrub, A.V. Laser beam patterning of carbon nanotube arrays for the work of electron field emitters in technical vacuum. Mater. Sci. Eng. B. 2020, 262, 114691. [Google Scholar] [CrossRef]
- Gries, W.H. A Universal Predictive Equation for the Inelastic Mean Free Pathlengths of X-ray Photoelectrons and Auger Electrons. Surf. Interface Anal. 1996, 24, 38–50. [Google Scholar] [CrossRef]
- Barinov, A.; Malcioglu, O.B.; Fabris, S.; Sun, T.; Gregoratti, L.; Dalmiglio, M.; Kiskinova, M. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functional theory calculations. J. Phys. Chem. C 2009, 113, 9009–9013. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Pozdnyakov, G.A.; Okotrub, A.V.; Kanygin, M.A.; Nastaushev, Y.V.; Vilkov, O.Y.; Bulusheva, L.G. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow. Appl. Surf. Sci. 2016, 385, 464–471. [Google Scholar] [CrossRef]
- Zhan, D.; Ni, Z.; Chen, W.; Sun, L.; Luo, Z.; Lai, L.; Yu, T.; Wee, A.T.S.; Shen, Z. Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 2011, 49, 1362–1366. [Google Scholar] [CrossRef]
- Laikhtman, A.; Gouzmna, I.; Hoffman, A.; Comtet, G.; Hellner, L.; Dujardin, G. Sensitivity of near-edge x-ray absorption fine structure spectroscopy to ion beam damage in diamond films. J. Appl. Phys. 1999, 86, 4192. [Google Scholar] [CrossRef]
- Tang, Y.H.; Sham, T.K.; Hu, Y.F.; Lee, C.S.; Lee, S.T. Near-edge X-ray absorption fine structure study of helicity and defects in carbon nanotubes. Chem. Phys. Lett. 2002, 366, 636–641. [Google Scholar] [CrossRef]
- Wesner, D.; Krummacher, S.; Carr, R.; Sham, T.K.; Strongin, M.; Eberhart, W.; Weng, S.L.; Willaims, G.; Howells, M.; Kampas, F.; et al. Synchrotron-radiation studies of the transition of hydrogenated amorphous carbon to graphitic carbon. Phys. Rev. B 1983, 28, 2152. [Google Scholar] [CrossRef]
- Gorodetskyi, D.V.; Gusel’nikov, A.V.; Kerenya, A.G.; Smirnov, D.A.; Bulusheva, L.G.; Okotrub, A.V. Hydrogen Plasma Treatment of Aligned Multi-Walled Carbon Nanotube Arrays for Improvement of Field Emission Properties. Materials 2020, 13, 4420. [Google Scholar] [CrossRef] [PubMed]
- Sedelnikova, O.V.; Gurova, O.A.; Makarova, A.A.; Fedorenko, A.D.; Nikolenko, A.D.; Plyusnin, P.E.; Arenal, R.; Bulusheva, L.G.; Okotrub, A.V. Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes. Nanomaterials 2020, 10, 818. [Google Scholar] [CrossRef] [PubMed]
- Fedorovskaya, E.O.; Bulusheva, L.G.; Kerenya, A.G.; Asanov, I.P.; Rudina, N.A.; Funtov, K.O.; Lyubutin, I.S.; Okotrub, A.V. Supercapacitor performance of vertically aligned multiwall carbon nanotubes produced by aerosol-assisted CCVD method. Electrochim. Acta 2014, 139, 165–172. [Google Scholar] [CrossRef]
- di Leo, R.A. Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 2007, 101, 064307. [Google Scholar] [CrossRef] [Green Version]
- Van, H.H.; Badura, K.; Zhang, M. Laser-induced transformation of freestanding carbon nanotubes into graphene nanoribbons. J. Mater. Sci. 2019, 54, 7397–7427.re. [Google Scholar] [CrossRef]
- Shuba, M.V.; Paddubskaya, A.G.; Kuzhir, P.P.; Slepyan, G.Y.; Maksimenko, S.A.; Ksenevich, V.K.; Buka, P.; Seliuta, D.; Kasalynas, I.; Macutkevic, J.; et al. Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes. Phys. Rev. B 2012, 85, 165435. [Google Scholar] [CrossRef]
- Shuba, M.V.; Yuko, D.I.; Kuzhir, P.P.; Maksimenko, S.A.; Chigir, G.G.; Pyalitski, A.N.; Sedelnikova, O.V.; Okotrub, A.V. Localized plasmon resonance in boron-doped multiwalled carbon nanotubes. Phys. Rev. B 2018, 97, 295427. [Google Scholar] [CrossRef] [Green Version]
- Okotrub, A.V.; Kubarev, V.V.; Kanygin, M.A.; Sedelnikova, O.V.; Bulusheva, L.G. Transmission of terahertz radiation by anisotropic MWCNT/polystyrene composite films. Phys. Status Solidi B 2011, 248, 2568–2571. [Google Scholar] [CrossRef]
- Bychanok, D.S.; Shuba, M.V.; Kuzhir, P.P.; Maksimenko, S.A.; Kubarev, V.V.; Kanygin, M.A.; Sedelnikova, O.V.; Bulusheva, L.G.; Okotrub, A.V. Anisotropic electromagnetic properties of polymer composites containingoriented multiwall carbon nanotubes in respect to terahertz polarizer applications. J. Appl. Phys. 2013, 114, 114304. [Google Scholar] [CrossRef] [Green Version]
- Macutkevic, J.; Seliuta, D.; Valusis, G.; Adomavicius, R.; Krotkus, A.; Kuzhir, P.; Paddubskaya, A.; Maksimenko, S.; Kuznetsov, V.; Mazov, I.; et al. Multi-walled carbon nanotubes/PMMA composites for THz applications. Diam. Relat. Mater. 2012, 25, 13–18. [Google Scholar] [CrossRef]
- Yiang, K.; Gu, M.; Guo, Y.; Pan, X.; Mu, G. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 2009, 47, 1723–1737. [Google Scholar] [CrossRef]
- Wei, Y.; Hu, X.; Sun, Z.; Wang, P.; Qiu, P.; Liu, W. Influence of graphene oxide with different oxidation levels on the properties of epoxy composites. Compos. Sci. Technol. 2018, 161, 75–84. [Google Scholar] [CrossRef]
- Matyushkin, Y.; Danilov, S.; Moskotin, M.; Belosevich, V.; Kaurova, N.; Rybin, M.; Obraztsova, E.D.; Fedorov, G.; Gorbenko, I.; Kachorovskii, V.; et al. Helicity-Sensitive Plasmonic Terahertz Interferometer. Nano Lett. 2020, 20, 7296–7303. [Google Scholar] [CrossRef]
Sample | Initial Array | Sample A | Sample D | ||||||
---|---|---|---|---|---|---|---|---|---|
point | 1 | 1’ | 1 | 2 | 3 | 1’ | 1 | 2 | 3 |
ID/IG | 0.66 | 0.37 | 0.47 | 0.66 | 0.48 | 0.26 | 0.36 | 0.71 | 0.92 |
I2D/IG | 0.69 | 0.81 | 0.95 | 0.72 | 0.95 | 1.14 | 0.78 | 0.82 | 1.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedelnikova, O.V.; Gorodetskiy, D.V.; Kurenya, A.G.; Baskakova, K.I.; Shlyakhova, E.V.; Makarova, A.A.; Gorokhov, G.V.; Bychanok, D.S.; Kuzhir, P.P.; Maksimenko, S.A.; et al. Laser Patterning of Aligned Carbon Nanotubes Arrays: Morphology, Surface Structure, and Interaction with Terahertz Radiation. Materials 2021, 14, 3275. https://doi.org/10.3390/ma14123275
Sedelnikova OV, Gorodetskiy DV, Kurenya AG, Baskakova KI, Shlyakhova EV, Makarova AA, Gorokhov GV, Bychanok DS, Kuzhir PP, Maksimenko SA, et al. Laser Patterning of Aligned Carbon Nanotubes Arrays: Morphology, Surface Structure, and Interaction with Terahertz Radiation. Materials. 2021; 14(12):3275. https://doi.org/10.3390/ma14123275
Chicago/Turabian StyleSedelnikova, Olga V., Dmitriy V. Gorodetskiy, Alexander G. Kurenya, Kseniya I. Baskakova, Elena V. Shlyakhova, Anna A. Makarova, Gleb V. Gorokhov, Dzmitry S. Bychanok, Polina P. Kuzhir, Sergey A. Maksimenko, and et al. 2021. "Laser Patterning of Aligned Carbon Nanotubes Arrays: Morphology, Surface Structure, and Interaction with Terahertz Radiation" Materials 14, no. 12: 3275. https://doi.org/10.3390/ma14123275
APA StyleSedelnikova, O. V., Gorodetskiy, D. V., Kurenya, A. G., Baskakova, K. I., Shlyakhova, E. V., Makarova, A. A., Gorokhov, G. V., Bychanok, D. S., Kuzhir, P. P., Maksimenko, S. A., Bulusheva, L. G., & Okotrub, A. V. (2021). Laser Patterning of Aligned Carbon Nanotubes Arrays: Morphology, Surface Structure, and Interaction with Terahertz Radiation. Materials, 14(12), 3275. https://doi.org/10.3390/ma14123275