Magnetic Control of Optical Reflectance from Metallic Thin Film Using Surface Plasmon Resonance and Faraday Rotation
Abstract
:1. Introduction
2. Experimentals
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crassee, I.; Levallois, J.; Walter, A.L.; Ostler, M.; Bostwick, A.; Rotenberg, E.; Seyller, T.; van der Marel, D.; Kuzmenko, A.B. Giant Faraday rotation in single-and multilayer graphene. Nat. Phys. 2011, 7, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Labeyrie, G.; Miniatura, C.; Kaiser, R. Large Faraday rotation of resonant light in a cold atomic cloud. Phys. Rev. A 2001, 64, 033402. [Google Scholar] [CrossRef] [Green Version]
- Mansuripur, M. The faraday effect. Opt. Photonics News 1999, 10, 32–36. [Google Scholar] [CrossRef]
- Uchida, H.; Masuda, Y.; Fujikawa, R.; Baryshev, A.; Inoue, M. Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film. J. Magn. Magn. Mater. 2009, 321, 843–845. [Google Scholar] [CrossRef]
- Hamidi, S.M.; Tehranchi, M.M. Magneto-optical Faraday rotation in Ce: YIG thin films incorporating gold nanoparticles. J. Supercond. Nov. Magn. 2011, 25, 2713–2717. [Google Scholar] [CrossRef]
- Sadatgol, M.; Rahman, M.; Forati, E.; Levy, M.; Güney, D.Ö. Enhanced Faraday rotation in hybrid magne-to-optical metamaterial structure of bismuth-substituted-iron-garnet with embedded-gold-wires. J. Appl. Phys. 2016, 119, 103105. [Google Scholar] [CrossRef]
- Yang, Z.J.; Scheinfein, M.R. Combined three-axis surface magneto-optical Kerr effects in the study of sur-face and ultrathin-film magnetism. J. Appl. Phys. 1993, 74, 6810–6823. [Google Scholar] [CrossRef]
- You, C.-Y.; Shin, S.-C. Generalized analytic formulae for magneto-optical Kerr effects. J. Appl. Phys. 1998, 84, 541–546. [Google Scholar] [CrossRef]
- Qiu, Z.Q.; Bader, S.D. Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 2000, 71, 1243–1255. [Google Scholar] [CrossRef]
- Paliwal, A.; Tomar, M.; Gupta, V. Study of optical properties of Ce and Mn doped BiFeO3 thin films using SPR technique for magnetic field sensing. Vacuum 2018, 158, 48–51. [Google Scholar] [CrossRef]
- Aplet, L.J.; Carson, J.W.; Aplet, L.J.; Carson, J.W. A Faraday effect optical isolator. Appl. Opt. 1964, 3, 544–545. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, S.; Zuegel, J.D.; Marciante, J.R. All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber. Opt. Lett. 2010, 35, 706–708. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.D.; Teegarden, K.J.; Ahrenkiel, R.K. Faraday rotation optical isolator for 10.6-μm radiation. Appl. Opt. 1974, 13, 2313–2316. [Google Scholar] [CrossRef]
- Chin, J.Y.; Steinle, T.; Wehlus, T.; Dregely, D.; Weiss, T.; Belotelov, V.I.; Stritzker, B.; Giessen, H. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat. Commun. 2013, 4, 1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raether, H. Surface plasmons on smooth surfaces. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 1988; pp. 4–39. [Google Scholar]
- Kim, J.; Son, C.; Choi, S.; Yoon, W.J.; Ju, H. A plasmonic fiber based glucometer and its temperature dependence. Micromachines 2018, 9, 506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, D.R.; Prasanth, S.; Vineeshkumar, T.; Sudarsanakumar, C. Surface Plasmon Resonance based fiber optic sensor for mercury detection using gold nanoparticles PVA hybrid. Opt. Commun. 2016, 367, 102–107. [Google Scholar] [CrossRef]
- Alberto, N.; Domingues, M.F.; Marques, C.; André, P.; Antunes, P. Optical fiber magnetic field sensors based on magnetic fluid: A review. Sensors 2018, 18, 4325. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Li, S.; Li, H.; Zi, J.; Zhang, W.; Fan, Z.; An, G.; Bao, Y. Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter. Plasmonics 2015, 10, 931–939. [Google Scholar] [CrossRef]
- Kabashin, A.V.; Kochergin, V.E.; Nikitin, P.I. Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrast. Sens. Actuators B Chem. 1999, 54, 51–56. [Google Scholar] [CrossRef]
- Zhang, N.M.Y.; Hu, D.J.J.; Shum, P.P.; Wu, Z.; Li, K.; Huang, T.; Wei, L. Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber. J. Opt. 2016, 18, 065005. [Google Scholar] [CrossRef]
- Ferreiro-Vila, E.; González-Díaz, J.B.; Fermento, R.; González, M.U.; García-Martín, A.; Garcia-Martin, J.M.; Cebollada, A.; Armelles, G.; Meneses-Rodríguez, D.; Sandoval, E.M. Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures. Phys. Rev. B 2009, 80, 125132. [Google Scholar] [CrossRef] [Green Version]
- Martín-Becerra, D.; González-Díaz, J.B.; Temnov, V.V.; Cebollada, A.; Armelles, G.; Thomay, T.; Leitenstorfer, A.; Bratschitsch, R.; García-Martín, A.; González, M.U. Enhancement of the magnetic modulation of surface plasmon polaritons in Au/Co/Au films. Appl. Phys. Lett. 2010, 97, 183114. [Google Scholar] [CrossRef] [Green Version]
- Herreño-Fierro, C.A.; Patiño, E.J. Maximization of surface-enhanced transversal magneto-optic Kerr effect in Au/Co/Au thin films. Phys. Status Solidi (b) 2015, 252, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Kumar, J.; Zhou, F.; Li, L.; Tripathy, S. A simple experiment for determining Verdet constants using alternating current magnetic fields. Am. J. Phys. 1999, 67, 714–717. [Google Scholar] [CrossRef] [Green Version]
- Peyghambarian, N.; Norwood, R.A.; Persoons, A. In-Fiber Magneto-Optic Devices Based on Ultrahigh Verdet Constant Organic Materials and Holey Fibers; Arizona Univ Board of Regents Tucson: Tucson, AZ, USA, 2009; Available online: https://apps.dtic.mil/sti/citations/ADA495425 (accessed on 2 February 2009).
- Sepúlveda, B.; González-Díaz, J.B.; García-Martín, A.; Lechuga, L.M.; Armelles, G. Plasmon-induced magneto-optical activity in nanosized gold disks. Phys. Rev. Lett. 2010, 104, 147401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.M.; Wears, M.L.; Matelon, R.J.; Hooper, I.R. Magneto-optic behaviour in the presence of surface plasmons. J. Phys. Condens. Matter 2008, 20, 345230. [Google Scholar] [CrossRef] [Green Version]
- Hermann, C.; Kosobukin, V.A.; Lampel, G.; Peretti, J.; Safarov, V.I.; Bertrand, P. Surface-enhanced mag-neto-optics in metallic multilayer films. Phys. Rev. B 2001, 64, 235422. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, C.; Ju, H. Magnetic Control of Optical Reflectance from Metallic Thin Film Using Surface Plasmon Resonance and Faraday Rotation. Materials 2021, 14, 3354. https://doi.org/10.3390/ma14123354
Son C, Ju H. Magnetic Control of Optical Reflectance from Metallic Thin Film Using Surface Plasmon Resonance and Faraday Rotation. Materials. 2021; 14(12):3354. https://doi.org/10.3390/ma14123354
Chicago/Turabian StyleSon, Changjin, and Heongkyu Ju. 2021. "Magnetic Control of Optical Reflectance from Metallic Thin Film Using Surface Plasmon Resonance and Faraday Rotation" Materials 14, no. 12: 3354. https://doi.org/10.3390/ma14123354
APA StyleSon, C., & Ju, H. (2021). Magnetic Control of Optical Reflectance from Metallic Thin Film Using Surface Plasmon Resonance and Faraday Rotation. Materials, 14(12), 3354. https://doi.org/10.3390/ma14123354