Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Tissue Specimen and Establishment of Primary Cell Culture of Human Oral Keratinocytes
2.2. Preparation of Aqueous Extract of T. cordifolia (TcE)
2.3. Cell Viability Assay
2.4. Preparation of In Vitro Fibrosis Model
2.5. Assessment of Anti-Fibrotic Activity of TcE by RT qPCR
2.6. Statistical Analysis
3. Results
3.1. Cell Viability Assay
3.2. Antifibrotic Activity of TcE by RT qPCR
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sudarshan, R.; Annigeri, R.G.; Vijayabala, S.S. Aloe vera in the treatment for oral submucous fibrosis—A preliminary study. J. Oral Pathol. Med. 2012, 41, 755–761. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Johnson, N.W.; Van Der Waal, I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J. Oral Pathol. Med. 2007, 36, 575–580. [Google Scholar] [CrossRef]
- Chiu, C.; Chang, M.; Chiang, C.; Hahn, L.; Hsieh, L. Interaction of Collagen-related Genes and Susceptibility to Betel. Cancer Epidemiol. Biomark. Prev. 2002, 11, 646–653. [Google Scholar]
- Mukherjee, A.L.; Biswas, S.K. Oral submucous fibrosis-A search for Aetiology. Indian J. Otolaryngol. 1972, 24, 11–15. [Google Scholar] [CrossRef]
- Sirsat, S.M.; Khanolkar, V.R. Submucous fibrosis of the palate and pillars of the fauces. Indian J. Med. Sci. 1962, 16, 189–197. [Google Scholar] [PubMed]
- Ramadass, T.; Manokaran, G.; Pushpala, S.M.; Narayanan, N.; Kulkarni, G.N. Oral submucous fibrosis—New dimensions in surgery. Indian J. Otolaryngol. Head Neck Surg. 2005, 57, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Pindborg, J.J.; Chawla, T.N.; Srivastava, A.N.; Gupta, D.; Mehrotra, M.L. Clinical aspects of oral submucous fibrosis. Acta Odontol. Scand. 1964, 22, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Pindborg, J.J.; Sirsat, S.M. Oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. 1966, 22, 764–779. [Google Scholar] [CrossRef]
- Pindborg, J.J.; Mehta, F.S.; Gupta, P.C.; Daftary, D.K. Prevalence of oral submucous fibrosis among 50,915 Indian villagers. Br. J. Cancer 1968, 22, 646–654. [Google Scholar] [CrossRef] [Green Version]
- Pindborg, J.J.; Zachariah, J. Frequency of oral submucous fibrosis among 100 South Indians with oral cancer. Bull. World Health Organ. 1965, 32, 750–753. [Google Scholar]
- Banerjee, S.C.; Ostroff, J.S.; Bari, S.; D’Agostino, T.A.; Khera, M.; Acharya, S.; Gany, F. Gutka and Tambaku Paan use among South Asian immigrants: A focus group study. J. Immigr. Minor. Health 2014, 16, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Hazarey, V.K.; Erlewad, D.M.; Mundhe, K.A.; Ughade, S.N. Oral submucous fibrosis: Study of 1000 cases from central India. J. Oral Pathol. Med. 2007, 36, 12–17. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr. Eval. Carcinog. Risks Hum. 2004, 85, 1–334. [Google Scholar]
- Babu, S.; Bhat, R.V.; Kumar, P.U.; Sesikaran, B.; Rao, K.V.; Aruna, P.; Reddy, P.R.R. A comparative clinico-pathological study of oral submucous fibrosis in habitual chewers of pan masala and betelquid. J. Toxicol. Clin. Toxicol. 1996, 34, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.C.; Sinor, P.N.; Bhonsle, R.B.; Pawar, V.S.; Mehta, H.C. Oral submucous fibrosis in India: A new epidemic? Natl. Med. J. India 1998, 11, 113–116. [Google Scholar]
- Williams, S.; Malik, A.; Chowdhury, S.; Chauhan, S. Sociocultural aspects of areca nut use. Addict. Biol. 2002, 7, 147–154. [Google Scholar] [CrossRef]
- Trivedy, C.R.; Warnakulasuriya, K.A.; Peters, T.J.; Senkus, R.; Hazarey, V.K.; Johnson, N.W. Raised tissue copper levels in oral submucous fibrosis. J. Oral Pathol. Med. 2000, 29, 241–248. [Google Scholar] [CrossRef]
- Trivedy, C.; Meghji, S.; Warnakulasuriya, K.A.; Johnson, N.W.; Harris, M. Copper stimulates human oral fibroblasts in vitro: A role in the pathogenesis of oral submucous fibrosis. J. Oral Pathol. Med. 2001, 30, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Kalbande, A.; Khakse, G.; Priya, D.; Tamgadge, P. Epidemiological Study of Oral Submucous Fibrosis in Yavatmal District; Medpulse: Aurangabad, India, 2013; pp. 38–40. [Google Scholar]
- Mathew, P.; Austin, R.; Varghese, S.S.; Manojkumar, A. Role of areca nut and its commercial products in oral submucous fibrosis—A review. J. Adv. Med. Dent. Sci. Res. 2014, 2, 192–200. [Google Scholar]
- Farsi, N.M.A. Signs of oral dryness in relation to salivary flow rate, pH, buffering capacity and dry mouth complaints. BMC Oral Health 2007, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Kumar, N.; Pant, I.; Narra, S.; Kondaiah, P. Activation of TGF-β Pathway by Areca Nut Constituents: A Possible Cause of Oral Submucous Fibrosis. PLoS ONE 2012, 7, e51806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; He, R.; Yang, G.; Tan, J.; Zhou, L.; Meng, X.; Huang, X.R.; Lan, H.Y. Asiatic Acid Inhibits Liver Fibrosis by Blocking TGF-beta/Smad Signaling In Vivo and In Vitro. PLoS ONE 2012, 7, e31350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, M.K.; Mhaske, S.; Ragavendra, R. Oral submucous fibrosis -Current Concepts in Etiopathogenesis. Peoples J. Sci. Res. 2008, 1, 39–44. [Google Scholar]
- Mehrotra, R.; Singh, H.P.; Gupta, S.C.; Singh, M.; Jain, S. Pentoxifylline therapy in the management of oral submucous fibrosis. Asian Pac. J. Cancer Prev. 2011, 12, 971–974. [Google Scholar] [PubMed]
- Oscarsson, N.; Ny, L.; Mölne, J.; Lind, F.; Ricksten, S.-E.; Seeman-Lodding, H.; Giglio, D. Hyperbaric oxygen treatment reverses radiation induced pro-fibrotic and oxidative stress responses in a rat model. Free Radic. Biol. Med. 2017, 103, 248–255. [Google Scholar] [CrossRef]
- Tilakaratne, W.M.; Ekanayaka, R.P.; Herath, M.; Jayasinghe, R.D.; Sitheeque, M.; Amarasinghe, H. Intralesional corticosteroids as a treatment for restricted mouth opening in oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 224–231. [Google Scholar] [CrossRef]
- Shetty, P.; Shenai, P.; Chatra, L.; Rao, P. Efficacy of spirulina as an antioxidant adjuvant to corticosteroid injection in management of oral submucous fibrosis. Indian J. Dent. Res. 2013, 24, 347. [Google Scholar] [CrossRef]
- Marques, L.J.; Zheng, L.; Poulakis, N.; Guzman, J.; Costabel, U. Pentoxifylline inhibits TNF-α production from human alveolar macrophages. Am. J. Respir. Crit. Care Med. 1999, 159, 508–511. [Google Scholar] [CrossRef]
- Rajendran, R.; Rani, V.; Shaikh, S. Pentoxifylline therapy: A new adjunct in the treatment of oral submucous fibrosis. Indian J. Dent. Res. 2006, 17, 190–198. [Google Scholar] [CrossRef]
- Krishnamoorthy, B.; Khan, M. Management of oral submucous fibrosis by two different drug regimens: A comparative study. Dent. Res. J. 2013, 10, 527–532. [Google Scholar]
- Daga, D.; Singh, R.K.; Pal, U.S.; Gurung, T.; Gangwar, S. Efficacy of oral colchicine with intralesional hyaluronidase or triamcinolone acetonide in the Grade II oral submucous fibrosis. Natl. J. Maxillofac. Surg. 2019, 10, 3–7. [Google Scholar] [CrossRef]
- Gupta, D.; Sharma, S.C. Oral submucous fibrosis--a new treatment regimen. J. Oral Maxillofac. Surg. 1988, 46, 830–833. [Google Scholar] [CrossRef]
- Gupta, S.; Ghosh, S.; Gupta, S.; Sakhuja, P. Effect of curcumin on the expression of p53, transforming growth factor-β, and inducible nitric oxide synthase in oral submucous fibrosis: A pilot study. J. Investig. Clin. Dent. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Adtani, P.N.; Narasimhan, M.; Punnoose, A.M.; Kambalachenu, H.R. Antifibrotic effect of Centella asiatica Linn and asiatic acid on arecoline-induced fibrosis in human buccal fibroblasts. J. Investig. Clin. Dent. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Guan, Z.J.; Pan, W.T.; Du, T.F.; Zhai, Y.J.; Guo, J. Tanshinone suppresses arecoline-induced epithelial–Mesenchymal transition in oral submucous fibrosis by epigenetically reactivating the p53 pathway. Oncol. Res. 2018, 26, 483–494. [Google Scholar] [CrossRef]
- Lee, P.H.; Chu, P.M.; Hsieh, P.L.; Yang, H.W.; Chueh, P.J.; Huang, Y.F.; Liao, Y.W.; Yu, C.C. Glabridin inhibits the activation of myofibroblasts in human fibrotic buccal mucosal fibroblasts through TGF-β/smad signaling. Environ. Toxicol. 2018, 33, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Su, T.R.; Liao, Y.W.; Hsieh, P.L.; Tsai, L.L.; Fang, C.Y.; Lin, T.; Lee, Y.H.; Harn, H.J.; Yu, C.C. Butylidenephthalide abrogates the myofibroblasts activation and mesenchymal transdifferentiation in oral submucous fibrosis. Environ. Toxicol. 2018, 33, 686–694. [Google Scholar] [CrossRef]
- Hsieh, Y.-P.; Chen, H.-M.; Chang, J.Z.-C.; Chiang, C.-P.; Deng, Y.-T.; Kuo, M.Y.-P. Arecoline stimulated early growth response-1 production in human buccal fibroblasts: Suppression by epigallocatechin-3-gallate. Head Neck 2014, 36, 1391. [Google Scholar] [CrossRef]
- Kumar, A.; Bagewadi, A.; Keluskar, V.; Singh, M. Efficacy of lycopene in the management of oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103, 207–213. [Google Scholar] [CrossRef]
- Rana, V.; Thakur, K.; Sood, R.; Sharma, V.; Sharma, T.R. Genetic diversity analysis of Tinospora cordifolia germplasm collected from northwestern Himalayan region of India. J. Genet. 2012, 91, 99–103. [Google Scholar] [CrossRef]
- Parthipan, M.; Aravindhan, V.; Rajendran, A. Medico-botanical study of Yercaud hills in the eastern Ghats of Tamil Nadu, India. Anc. Sci. Life 2011, 30, 104–109. [Google Scholar]
- Department of Ayush; Ministry of Health and FW. The Ayurvedic Pharmacopoeia of India, 1st ed.; Pharmacopoeia Commission for Indian Medicine & Homoeopathy: Ghaziabad, India, 2001; Volume 1. [Google Scholar]
- Gupta, S.S.; Verma, S.C.; Garg, V.P.; Rai, M. Anti-diabetic effects of Tinospora cardifolia. I. Effect on fasting blood sugar level, glucose tolerance and adrenaline induced hyperglycaemia. Indian J. Med. Res. 1967, 55, 733–745. [Google Scholar]
- Chopra, R.N.; Chopra, I.C.; Handa, K.L.; Kapur, L.D. Chopra’s Indigenous Drugs of India, 2nd ed.; B.K.; Dhur of Academic Publishers: Kolkatta, India, 1958. [Google Scholar]
- Chintalwar, G.; Jain, A.; Sipahimalani, A.; Banerji, A.; Sumariwalla, P.; Ramakrishnan, R.; Sainis, K. An immunologically active arabinogalactan from Tinospora cordifolia. Phytochemistry 1999, 52, 1089–1093. [Google Scholar] [CrossRef]
- Upadhyay, A.K.; Kumar, K.; Kumar, A.; Mishra, H.S. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi)—Validation of the Ayurvedic pharmacology through experimental and clinical studies. Int. J. Ayurveda Res. 2010, 1, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.; Ghosh, S. Tinospora cordifolia: One plant, many roles. Anc. Sci. Life 2012, 31, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Radhakrishnan, R. CTGF is obligatory for TGF-β1 mediated fibrosis in OSMF. Oral Oncol. 2016, 56, e10–e11. [Google Scholar] [CrossRef]
- Rajendran, R.; Shanthi Pillai, M.; Rajeesh Mohammed, P.; Shaikh, S. Expression of matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and their inhibitors (TIMP-1 and TIMP-2) in oral submucous fibrosis. Indian J. Dent. Res. 2006, 17, 161. [Google Scholar] [CrossRef]
- Rehman, A.; Ali, S.; Lone, M.A.; Atif, M.; Hassona, Y.; Prime, S.S.; Pitiyage, G.N.; James, E.L.N.; Parkinson, E.K. Areca nut alkaloids induce irreparable DNA damage and senescence in fibroblasts and may create a favourable environment for tumour progression. J. Oral Pathol. Med. 2016, 45, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-F.; Hsieh, Y.-S.; Tsai, C.-H.; Chen, Y.-J.; Chang, Y.-C. Increased plasminogen activator inhibitor-1/tissue type plasminogen activator ratio in oral submucous fibrosis. Oral Dis. 2007, 13, 234–238. [Google Scholar] [CrossRef]
- Subramanian, M.; Chintalwar, G.J.; Chattopadhyay, S. Antioxidant properties of a Tinospora cordifolia polysaccharide against iron-mediated lipid damage and γ-ray induced protein damage. Redox Rep. 2002, 7, 137–143. [Google Scholar] [CrossRef]
- Kapil, A.; Sharma, S. Immunopotentiating compounds from Tinospora cordifolia. J. Ethnopharmacol. 1997, 58, 89–95. [Google Scholar] [CrossRef]
- Thippeswamy, G.; Sheela, M.L.; Salimath, B.P. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-<kappa>B and its DNA binding activity. Eur. J. Pharmacol. 2008, 588, 141–150. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Reverse Primer |
---|---|---|
TIMP1 | 5′-GGA GAG TGT CTG CGG ATA CTT C-3′ | 5′-GCA GGT AGT GAT GTG CAA GAG TC-3′ |
TIMP2 | 5′-ACC CTC TGT GAC TTC ATC GTG C-3′ | 5′-GGA GAT GTA GCA CGG GAT CAT G-3′ |
TIMP3 | 5′-TAC CGA GGC TTC ACC AAG ATG C-3′ | 5′-CAT CTT GCC ATC ATA GAC GCG AC-3′ |
MMP1 | 5′-ATG AAG CAG CCC AGA TGT GGA G-3′ | 5′-TGG TCC ACA TCT GCT CTT GGC A-3′ |
MMP2 | 5′-AGC GAG TGG ATG CCG CCT TTA A-3′ | 5′-CAT TCC AGG CAT CTG CGA TGA G-3′ |
MMP3 | 5′-CAC TCA CAG ACC TGA CTC GGT T-3′ | 5′-AAG CAG GAT CAC AGT TGG CTG G-3′ |
CTGF | 5′-CTT GCG AAG CTG ACC TGG AAG A-3′ | 5′-CCG TCG GTA CAT ACT CCA CAG A-3′ |
PLAU | 5′-GGC TTA ACT CCA ACA CGC AAG G-3′ | 5′-CCT CCT TGG AAC GGA TCT TCA G-3′ |
SERPINE1 | 5′-CTC ATC AGC CAC TGG AAA GGC A-3′ | 5′-GAC TCG TGA AGT CAG CCT GAA AC-3′ |
COL1A1 | 5′-GAT TCC CTG GAC CTA AAG GTG C-3′ | 5′-AGC CTC TCC ATC TTT GCC AGC A-3′ |
COL3A1 | 5′-TGG TCT GCA AGG AAT GCC TGG A-3′ | 5′-TCT TTC CCT GGG ACA CCA TCA G-3′ |
FN1 | 5′-ACA ACA CCG AGG TGA CTG AGA C-3′ | 5′-GGA CAC AAC GAT GCT TCC TGA G-3′ |
GAPDH | 5′-GTC TCC TCT GAC TTC AAC AGC G-3′ | 5′-ACC ACC CTG TTG CTG TAG CCA A-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, S. Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study. Materials 2021, 14, 3374. https://doi.org/10.3390/ma14123374
Patil S. Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study. Materials. 2021; 14(12):3374. https://doi.org/10.3390/ma14123374
Chicago/Turabian StylePatil, Shankargouda. 2021. "Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study" Materials 14, no. 12: 3374. https://doi.org/10.3390/ma14123374
APA StylePatil, S. (2021). Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study. Materials, 14(12), 3374. https://doi.org/10.3390/ma14123374