Substituent and Solvent Polarity on the Spectroscopic Properties in Azo Derivatives of 2-Hydroxynaphthalene and Their Difluoroboranes Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Synthesis of 1-Arylazonaphthalen-2-ols (1–4)—General Procedure
2.2.2. Elemental Analysis Is as Follows
2.2.3. Synthesis of 1-Phenylazonaphthalen-2-ols Difluoroboranes (5–8)—General Procedure
2.2.4. Elemental Analysis Is as Follows
2.3. Measurements
2.4. Quantum-Mechanical Calculations
3. Results and Discussion
3.1. Synthesis and Identification of 1-Phenylazonaphthalen-2-ols (1–4) and Their Difluoroboranes (5–8)
3.2. Spectroscopic Properties
3.3. Solvatochromism
3.4. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, F.A.; Bashandy, M.S.; Abd El-Wahab, H.; Sheier, M.B.; El-Molla, M.M.; Bedair, A.H. Synthesis of Several Newly Acid Dyes and their Application in Textile Dyeing. Int. J. Adv. Res. 2014, 2, 248–260. [Google Scholar]
- Karci, F.; Demirçali, A.; Şener, I.; Tilki, T. Synthesis of 4-amino-1H-benzo[4,5]imidazo[1,2-a]pyrimidin-2-one and its disperse azo dyes. Part 1: Phenylazo derivatives. Dye. Pigment. 2006, 71, 90–96. [Google Scholar] [CrossRef]
- Zhao, R.; Tan, C.; Xie, Y.; Gao, C.; Liu, H.; Jiang, Y. One step synthesis of azo compounds from nitroaromatics and anilines. Tetrahedron Lett. 2011, 52, 3805–3809. [Google Scholar] [CrossRef]
- Roldo, M.; Barbu, E.; Brown, J.F.; Laight, D.W.; Smart, J.D.; Tsibouklis, J. Azo compounds in colon-specific drug delivery. Expert Opin. Drug Deliv. 2007, 4, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W. Rational selection of oral 5-aminosalicylate formulations and prodrugs for the treatment of ulcerative colitis. Am. J. Gastroenterol. 2002, 97, 2939–2941. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Rane, N.; Gurram, V.K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2004, 14, 4185–4190. [Google Scholar] [CrossRef] [PubMed]
- Doran, T.M.; Anderson, E.A.; Latchney, S.E.; Opanashuk, L.A.; Nilsson, B.L. An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly. ACS Chem. Neurosci. 2012, 3, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koukabi, N.; Otokesh, S.; Kolvari, E.; Amoozadeh, A. Convenient and rapid diazotization and diazo coupling reaction via aryl diazonium nanomagnetic sulfate under solvent-free conditions at room temperature. Dye. Pigment. 2016, 124, 12–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Ma, X.; Ma, X.; Wang, B.; Li, H.; Huang, Y.; Liu, C. An environmentally friendly approach to the green synthesis of azo dyes with aryltriazenes via ionic liquid promoted C-N bonds formation. Dye. Pigment. 2018, 158, 438–444. [Google Scholar] [CrossRef]
- Yesodha, S.K.; Sadashiva Pillai, C.K.; Tsutsumi, N. Stable polymeric materials for nonlinear optics: A review based on azobenzene systems. Prog. Polym. Sci. 2004, 29, 45–74. [Google Scholar] [CrossRef]
- Hvilsted, S.; Sánchez, C.; Alcalá, R. The volume holographic optical storage potential in azobenzene containing polymers. J. Mater. Chem. 2009, 19, 6641–6648. [Google Scholar] [CrossRef]
- Li, T.R.; Du, X.K.; Huo, T.L. Magnetic resonance urography and X-ray urography findings of congenital megaureter. Chin. Med. Sci. J. 2011, 26, 103–108. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Q.; Li, C.; Qin, J.; Li, Z. Azobenzene-based colorimetric chemosensors for rapid naked-eye detection of mercury(II). Chem. A Eur. J. 2011, 17, 7276–7281. [Google Scholar] [CrossRef]
- Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid. Available online: https://books.google.pl/books?hl=pl&lr=&id=pBy3vMNmwOgC&oi=fnd&pg=PR5&ots=qCvU7hbLLD&sig=j4e9TgnyZCwOr_q11DjEdLY5k00&redir_esc=y#v=onepage&q&f=false (accessed on 25 January 2021).
- Bahrenburg, J.; Sievers, C.M.; Schönborn, J.B.; Hartke, B.; Renth, F.; Temps, F.; Näther, C.; Sönnichsen, F.D. Photochemical properties of multi-azobenzene compounds. Photochem. Photobiol. Sci. 2013, 12, 511–518. [Google Scholar] [CrossRef]
- Szymański, W.; Beierle, J.M.; Kistemaker, H.A.V.; Velema, W.A.; Feringa, B.L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 2013, 113, 6114–6178. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, I.A.; Yu, L.; Matsui, H. Application of host-guest chemistry in nanotube-based device fabrication: Photochemically controlled immobilization of azobenzene nanotubes on patterned α-CD monolayer/Au substrates via molecular recognition. J. Am. Chem. Soc. 2003, 125, 9542–9543. [Google Scholar] [CrossRef]
- Alarcón, S.H.; Olivieri, A.C.; Sanz, D.; Claramunt, R.M.; Elguero, J. Substituent and solvent effects on the proton transfer equilibrium in anils and azo derivatives of naphthol. Multinuclear NMR study and theoretical calculations. J. Mol. Struct. 2004, 705, 1–9. [Google Scholar] [CrossRef]
- Olivieri, A.C.; Wilson, R.B.; Paul, I.C.; Curtin, D.Y. 13C NMR and X-ray Structure Determination of 1-(Arylazo)-2-naphthols. Intramolecular Proton Transfer between Nitrogen and Oxygen Atoms in the Solid State. J. Am. Chem. Soc. 1989, 111, 5525–5532. [Google Scholar] [CrossRef]
- Schmidt, M.U.; Brüning, J.; Wirth, D.; Bolte, M. Two azo pigments based on Β-naphthol. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2008, 64, o474–o477. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, C.C.; Ding, M.F.; Lin, S.T. The substituent effect of 1-arylazonaphthen-2-ols on azo-hydrazone tautomerization according to NMR analysis. J. Chin. Chem. Soc. 2015, 62, 335–341. [Google Scholar] [CrossRef]
- Lin, S.-T.; Lin, L.-H.; Lin, Y.-C.; Ding, M.-F. Substituent Effect on the Tautomerization of 1-Arylazonaphthalen-2-ols by Mass Spectrometric Analysis. J. Chin. Chem. Soc. 2015, 62, 257–262. [Google Scholar] [CrossRef]
- Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hughes, R.P.; Aprahamian, I. Near-Infrared Light Activated Azo-BF 2 Switches. J. Am. Chem. Soc. 2014, 136. [Google Scholar] [CrossRef] [PubMed]
- Avobenzone, D.; Zhang, G.; Lu, J.; Sabat, M.; Fraser, C.L. Polymorphism and reversible mechanochromic luminescence for solid-state. J. Am. Chem. Soc. 2010, 132, 2160–2162. [Google Scholar] [CrossRef]
- Kubota, Y.; Tanaka, S.; Funabiki, K.; Matsui, M. Synthesis and fluorescence properties of thiazole-boron complexes bearing a β-ketoiminate ligand. Org. Lett. 2012, 14, 4682–4685. [Google Scholar] [CrossRef]
- Yoshino, J.; Furuta, A.; Kambe, T.; Itoi, H.; Kano, N.; Kawashima, T.; Ito, Y.; Asashima, M. Intensely fluorescent azobenzenes: Synthesis, crystal structures, effects of substituents, and application to fluorescent vital stain. Chem. A Eur. J. 2010, 16, 5026–5035. [Google Scholar] [CrossRef]
- Yoshino, J.; Kano, N.; Kawashima, T. Synthesis of the most intensely fluorescent azobenzene by utilizing the B-N interaction. Chem. Commun. 2007, 559–561. [Google Scholar] [CrossRef]
- Skotnicka, A.; Kolehmainen, E.; Czeleń, P.; Valkonen, A.; Gawinecki, R. Synthesis and structural characterization of substituted 2-phenacylbenzoxazoles. Int. J. Mol. Sci. 2013, 14, 4444–4460. [Google Scholar] [CrossRef]
- Skotnicka, A.; Czeleń, P.; Gawinecki, R. Tautomeric equilibria in solutions of 2-phenacylbenzimidazoles. Heteroat. Chem. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Skotnicka, A.; Czeleń, P.; Gawinecki, R. Tautomeric equilibria in solutions of 1-methyl-2-phenacylbenzimidazoles. J. Mol. Struct. 2017, 1134, 546–551. [Google Scholar] [CrossRef]
- Gawinecki, R.; Kuczek, A.; Kolehmainen, E.; Ośmiałowski, B.; Krygowski, T.M.; Kauppinen, R. Influence of bond fixation in benzo-annulated N-salicylideneanilines and their ortho-C(=O)X derivatives (X = CH3, NH2, OCH3) on tautomeric equilibria in solution. J. Org. Chem. 2007, 72, 5598–5607. [Google Scholar] [CrossRef]
- Sakamoto, T.; Terao, Y.; Sekiya, M. N-[(N-nitrosoarylamino)methyl]succinimide as a new agent generating aromatic diazotate. Chem. Pharm. Bull. 1977, 25, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Tedder, J.M. The direct introduction of the diazonium group into aromatic nuclei. Part I. The basic reaction, yielding diazonium salts from polyalkylbenzenes, phenol ethers, phenols, and aromatic tertiary amines. J. Chem. Soc. 1957, 4003–4008. [Google Scholar] [CrossRef]
- Schreiber, J.; Večeřa, M. Reaktivität organischer Azoverbindungen V. Scheinbare Dissoziationskonstanten der 1-Phenylazo-2-naphthole in 50%igem Äthanol. Collect. Czechoslov. Chem. Commun. 1969, 34, 2145–2150. [Google Scholar] [CrossRef]
- Rahimizadeh, M.; Eshghi, H.; Shiri, A.; Ghadamyari, Z.; Matin, M.M.; Oroojalian, F.; Pordeli, P. Fe(HSO4)3 as an Efficient Catalyst for Diazotization and Diazo Coupling Reactions. J. Korean Chem. Soc. 2012, 56. [Google Scholar] [CrossRef]
- Safari, J.; Zarnegar, Z. An environmentally friendly approach to the green synthesis of azo dyes in the presence of magnetic solid acid catalysts. RSC Adv. 2015, 5, 17738–17745. [Google Scholar] [CrossRef]
- Shomali, A.; Valizadeh, H.; Noorshargh, S. New Generation of Nitrite Functionalized Star-like Polyvinyl Imidazolium Compound: Application as a Nitrosonium Source and Three Dimensional Nanocatalyst for the Synthesis of Azo Dyes. Lett. Org. Chem. 2017, 14, 409–418. [Google Scholar] [CrossRef]
- Valizadeh, H.; Shomali, A.; Nourshargh, S.; Mohammad-Rezaei, R. Carboxyl and nitrite functionalized graphene quantum dots as a highly active reagent and catalyst for rapid diazotization reaction and synthesis of azo-dyes under solvent-free conditions. Dye. Pigment. 2015, 113, 522–528. [Google Scholar] [CrossRef]
- Barrett, G.C.; El-Abadelah, M.M.; Hargreaves, M.K. Cleavage of 2-acetyl-2-phenylazopropionanilide and related compounds by boron trifluoride. New Japp-Klingemann reactions. J. Chem. Soc. C Org. 1989, 1986–1989. [Google Scholar] [CrossRef]
- Umland, F.; Hohaus, E.; Brodte, K. Borchelate und Bormetallchelate, II. Über die Bildung von Fluorborchelaten. Chem. Ber. 1973, 106, 2427–2437. [Google Scholar] [CrossRef]
- Jiménez, C.; Farfan, N.; Romero-Avila, M.; Santillan, R.; Malfant, I.; Lacroix, P.G. Light induced nonlinear optical switch in boronated chromophores: A theoretical search towards high contrast switches in the azobenzene series. J. Organomet. Chem. 2015, 799–800, 215–222. [Google Scholar] [CrossRef]
- Olmsted, J. Calorimetric Determinations of Absolute Fluorescence Quantum Yields. J. Phys. Chem. 1979, 83, 2581–2584. [Google Scholar] [CrossRef]
- Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef] [Green Version]
- Piatkevich, K.D.; Verkhusha, V. V Guide to Red Fluorescent Proteins and Biosensors for Flow Cytometry. Methods Cell Biol. 2011, 102, 431–461. [Google Scholar] [CrossRef] [Green Version]
- Tathe, A.B.; Sekar, N. Red Emitting Coumarin-Azo Dyes: Synthesis, Characterization, Linear and Non-linear Optical Properties-Experimental and Computational Approach. J. Fluoresc. 2016, 26, 1279–1293. [Google Scholar] [CrossRef]
- Acemioğlu, B.; Onganer, Y. Determination of Ground-and Excited-State Dipole Moments of Pyronin B Using the Solvatochromic Method and Quantum-Chemical Calculations. Acta Phys. Pol. A 2020, 138. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef] [Green Version]
- Ong, B.K.; Woon, K.L.; Ariffin, A. Evaluation of various density functionals for predicting the electrophosphorescent host HOMO, LUMO and triplet energies. Synth. Met. 2014, 195, 54–60. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Petersson, G.A.; Al-Laham, M.A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 1991, 94, 6081–6090. [Google Scholar] [CrossRef]
- Marten, B.; Kim, K.; Cortis, C.; Friesner, R.A.; Murphy, R.B.; Ringnalda, M.N.; Sitkoff, D.; Honig, B. New model for calculation of solvation free energies: Correction of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding effects. J. Phys. Chem. 1996, 100, 11775–11788. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 1997, 107, 3210–3221. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, UK, 2016. [Google Scholar]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Towns, A.D. Developments in azo disperse dyes derived from heterocyclic diazo components. Dye. Pigment. 1999, 42, 3–28. [Google Scholar] [CrossRef]
- Merino, E. Synthesis of azobenzenes: The coloured pieces of molecular materials. Chem. Soc. Rev. 2011, 40, 3835–3853. [Google Scholar] [CrossRef]
- Hamon, F.; Djedaini-Pilard, F.; Barbot, F.; Len, C. Azobenzenes-synthesis and carbohydrate applications. Tetrahedron 2009, 65, 10105–10123. [Google Scholar] [CrossRef]
- Valizadeh, H.; Shomali, A.; Ghorbani, J.; Noorshargh, S. Synthesis of a nitrite functionalized star-like poly ionic compound as a highly efficient nitrosonium source and catalyst for the diazotization of anilines and subsequent facile synthesis of azo dyes under solvent-free conditions. Dye. Pigment. 2015, 117, 64–71. [Google Scholar] [CrossRef]
- Masoud, M.S.; Elsamra, R.M.I.; Hemdan, S.S. Solvent, substituents and pH effects towards the spectral shifts of some highly coloured indicators. J. Serb. Chem. Soc. 2017, 82, 851–864. [Google Scholar] [CrossRef]
- Dakiky, M.; Kanan, K.; Khamis, M. Aggregation of o, o H-dihydroxyazo dyes II. Interaction of 2-hydroxy-4-nitrophenylazoresorcinol in DMSO and DMF. Dye. Pigment. 1999, 41, 199–209. [Google Scholar] [CrossRef]
- Jadhav, A.G.; Shinde, S.S.; Sekar, N. Red Emitting Monoazo Disperse Dyes with Phenyl(1H-benzoimidazol-5-yl) Methanone as Inbuilt Photostabilizing Unit: Synthesis, Spectroscopic, Dyeing and DFT Studies. J. Fluoresc. 2018, 28, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Józefowicz, M.; Milart, P.; Heldt, J.R. Determination of ground and excited state dipole moments of 4,5′-diamino[1,1′:3′,1″-terphenyl]-4′,6′-dicarbonitrile using solvatochromic method and quantum-chemical calculations. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2009, 74, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Párkányi, C.; Boniface, C.; Aaron, J.J.; Gaye, M.D.; Ghosh, R.; von Szentpály, L.; RaghuVeer, K.S. Electronic absorption and fluorescence spectra and excited singlet-state dipole moments of biologically important pyrimidines. Struct. Chem. 1992, 3, 277–289. [Google Scholar] [CrossRef]
- Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations. J. Mol. Struct. 2016, 1111, 151–156. [Google Scholar] [CrossRef]
No. | Substituent | Solvent | λab (nm) | λfl (nm) | ɛ (× 104, M−1·cm−1) | Stokes Shift (cm−1) | ϕfl | Brightness |
---|---|---|---|---|---|---|---|---|
1 | –NMe2 | DCM | 500 | 727 | 2.04 | 6245 | 0.00042 | 8.63 |
THF | 499 | 690 | 2.18 | 5547 | 0.00084 | 18.36 | ||
AcOEt | 496 | 673 | 2.65 | 5302 | 0.00074 | 19.61 | ||
Acetone | 497 | 717 | 2.77 | 6174 | 0.00044 | 12.41 | ||
MeOH | 495 | 723 | 2.85 | 6371 | 0.00013 | 3.63 | ||
NMP | 505 | 710 | 2.24 | 5717 | 0.00071 | 15.95 | ||
MeCN | 495 | 732 | 2.82 | 6541 | 0.00042 | 1.18 | ||
DMSO | 508 | 716 | 1.75 | 5718 | 0.00042 | 7.04 | ||
2 | –OEt | DCM | 419 | 611 | 1.19 | 7500 | 0.00015 | 1.75 |
THF | 418 | 609 | 0.76 | 7503 | 0.00020 | 1.56 | ||
AcOEt | 417 | 606 | 1.48 | 7479 | 0.00013 | 1.93 | ||
Acetone | 417 | 605 | 1.63 | 7452 | 0.00013 | 2.12 | ||
MeOH | 415 | 609 | 1.31 | 7676 | 0.00015 | 1.79 | ||
NMP | 421 | 585 | 1.15 | 6659 | 0.00393 | 45.23 | ||
MeCN | 417 | 608 | 1.62 | 7533 | 0.00011 | 1.82 | ||
DMSO | 421 | 617 | 0.93 | 7545 | 0.00113 | 10.45 | ||
3 | –iPr | DCM | 484 | 596 | 1.29 | 3882 | 0.00029 | 0 |
THF | 460 | 596 | 0.78 | 4961 | 0.00048 | 3.77 | ||
AcOEt | 461 | 588 | 1.14 | 4685 | 0.00013 | 1.49 | ||
Acetone | 460 | 591 | 1.14 | 4819 | 0.00008 | 0.91 | ||
MeOH | 485 | 576 | 1.17 | 3257 | 0 | 0 | ||
NMP | 471 | 555 | 1.04 | 3213 | 0.00033 | 3.44 | ||
MeCN | 475 | 586 | 1.43 | 3988 | 0 | 0 | ||
DMSO | 481 | 585 | 0.86 | 3696 | 0.00011 | 0.92 | ||
4 | –H | DCM | 479 | 592 | 1.43 | 3985 | 0 | 0 |
THF | 473 | 589 | 0.79 | 4164 | 0.00010 | 0.80 | ||
AcOEt | 472 | 595 | 1.15 | 4380 | 0.00011 | 1.22 | ||
Acetone | 472 | 593 | 1.13 | 4323 | 0.00007 | 0.83 | ||
MeOH | 478 | 583 | 1.39 | 3768 | 0.00019 | 2.69 | ||
NMP | 477 | 578 | 1.14 | 3663 | 0.00036 | 4.13 | ||
MeCN | 474 | 591 | 1.32 | 4176 | 0 | 0 | ||
DMSO | 480 | 591 | 1.09 | 3913 | 0.00086 | 0.94 |
No. | Substituent | Solvent | λab (nm) | λfl (nm) | ɛ (× 104, M−1.cm−1) | Stokes Shift (cm−1) | ϕfl | Brightness |
---|---|---|---|---|---|---|---|---|
5 | –NMe2 | DCM | 591 | 699 | 2.31 | 2614 | 0.13341 | 3083.93 |
THF | 585 | 687 | 2.08 | 2538 | 0.17281 | 3596.33 | ||
AcOEt | 580 | 685 | 2.28 | 2643 | 0.10533 | 2789.68 | ||
Acetone | 590 | 699 | 2.54 | 2643 | 0.00606 | 153.84 | ||
MeOH | 495 | 690 | 2.53 | 5709 | 0.02408 | 686.67 | ||
NMP | 608 | 711 | 1.78 | 2383 | 0.29677 | 5274.57 | ||
MeCN | 591 | 760 | 3.13 | 3762 | 0.00426 | 133.43 | ||
DMSO | 610 | 751 | 1.40 | 3078 | 0.77800 | 10810.62 | ||
6 | –OEt | DCM | 502 | 617 | 2.36 | 3713 | 0.02851 | 673.36 |
THF | 499 | 610 | 1.55 | 3647 | 0.02062 | 319.13 | ||
AcOEt | 486 | 606 | 1.45 | 4074 | 0.01394 | 202.67 | ||
Acetone | 488 | 611 | 1.64 | 4125 | 0.20587 | 338.84 | ||
MeOH | 458 | 618 | 1.38 | 5653 | 0 | 0 | ||
NMP | 471 | 624 | 1.30 | 5206 | 0.00046 | 6.00 | ||
MeCN | 496 | 618 | 2.13 | 3980 | 0.02167 | 460.87 | ||
DMSO | 469 | 617 | 1.13 | 5114 | 0.03301 | 430.85 | ||
7 | –iPr | DCM | 487 | 591 | 1.50 | 3613 | 0.00972 | 145.83 |
THF | 483 | 585 | 1.76 | 3609 | 0.00626 | 110.09 | ||
AcOEt | 479 | 586 | 1.47 | 3811 | 0.00557 | 81.89 | ||
Acetone | 483 | 588 | 1.64 | 3697 | 0.00637 | 93.65 | ||
MeOH | 485 | 601 | 1.11 | 3979 | 0 | 0 | ||
NMP | 482 | 598 | 1.29 | 4029 | 0.00079 | 10.24 | ||
MeCN | 483 | 589 | 1.54 | 3726 | 0.00686 | 105.64 | ||
DMSO | 487 | 585 | 1.11 | 3440 | 0.01041 | 115.79 | ||
8 | –H | DCM | 482 | 579 | 1.69 | 3476 | 0.00527 | 89.41 |
THF | 478 | 578 | 1.17 | 3619 | 0.00355 | 41.27 | ||
AcOEt | 474 | 576 | 1.48 | 3736 | 0.00277 | 40.91 | ||
Acetone | 476 | 577 | 1.37 | 3677 | 0.00360 | 40.61 | ||
MeOH | 478 | 550 | 1.45 | 2739 | 0 | 0 | ||
NMP | 479 | 588 | 1.17 | 3870 | 0.00154 | 18.08 | ||
MeCN | 476 | 579 | 1.67 | 3737 | 0.00383 | 63.85 | ||
DMSO | 480 | 584 | 0.61 | 3710 | 0.00472 | 28.75 |
No. | Substituent | E (Hartree) | ∆E (Hartree) | ∆E (kcal/mol) | |
---|---|---|---|---|---|
Azo | Hydrazone | ||||
1 | –NMe2 | −935.8620002 | −935.8627862 | 0.0007860 | 0.493 |
2 | –OEt | −955.7413224 | −955.7435404 | 0.0022180 | 1.392 |
3 | –iPr | −919.8277747 | −919.8312485 | 0.0034738 | 2.180 |
4 | –H | −801.8518881 | −801.8558497 | 0.0039616 | 2.486 |
No. | Solvent | HOMO (eV) | LUMO (eV) | Energy Gap (eV) | η (eV) |
---|---|---|---|---|---|
1a | DMSO MeOH DCM | −5.364 −5.240 −5.362 −5.238 −5.343 −5.221 | −2.596 −2.795 −2.591 −2.790 −2.551 −2.748 | 2.768 2.445 2.771 2.448 2.792 2.473 | 1.384 1.222 1.385 1.224 1.396 1.236 |
2a | DMSO MeOH DCM | −5.832 −5.731 −5.829 −5.728 −5.804 −5.705 | −2.767 −2.916 −2.763 −2.912 −2.734 −2.882 | 3.066 2.815 3.066 2.816 3.070 2.823 | 1.533 1.407 1.533 1.408 1.535 1.411 |
3a | DMSO MeOH DCM | −5.983 −5.903 −5.980 −5.900 −5.955 −5.878 | −2.842 −2.962 −2.839 −2.959 −2.812 −2.932 | 3.141 2.941 3.142 2.942 3.143 2.946 | 1.571 1.470 1.571 1.471 1.572 1.473 |
4a | DMSO MeOH DCM | −6.059 −6.000 −6.057 −5.998 −6.035 −5.979 | −2.897 −3.002 −2.894 −2.999 −2.872 −2.976 | 3.162 2.999 3.162 2.999 3.163 3.002 | 1.581 1.499 1.581 1.499 1.582 1.501 |
5 | DMSO MeOH DCM | −5.581 −5.580 −5.572 | −3.245 −3.241 −3.206 | 2.336 2.339 2.366 | 1.168 1.170 1.183 |
6 | DMSO MeOH DCM | −6.186 −6.185 −6.171 | −3.404 −3.401 −3.378 | 2.782 2.783 2.793 | 1.391 1.392 1.396 |
7 | DMSO MeOH DCM | −6.404 −6.403 −6.390 | −3.459 −3.456 −3.436 | 2.946 2.946 2.953 | 1.473 1.473 1.477 |
8 | DMSO MeOH DCM | −6.502 −6.501 −6.494 | −3.500 −3.498 −3.483 | 3.002 3.003 3.010 | 1.501 1.502 1.505 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skotnicka, A.; Czeleń, P. Substituent and Solvent Polarity on the Spectroscopic Properties in Azo Derivatives of 2-Hydroxynaphthalene and Their Difluoroboranes Complexes. Materials 2021, 14, 3387. https://doi.org/10.3390/ma14123387
Skotnicka A, Czeleń P. Substituent and Solvent Polarity on the Spectroscopic Properties in Azo Derivatives of 2-Hydroxynaphthalene and Their Difluoroboranes Complexes. Materials. 2021; 14(12):3387. https://doi.org/10.3390/ma14123387
Chicago/Turabian StyleSkotnicka, Agnieszka, and Przemysław Czeleń. 2021. "Substituent and Solvent Polarity on the Spectroscopic Properties in Azo Derivatives of 2-Hydroxynaphthalene and Their Difluoroboranes Complexes" Materials 14, no. 12: 3387. https://doi.org/10.3390/ma14123387
APA StyleSkotnicka, A., & Czeleń, P. (2021). Substituent and Solvent Polarity on the Spectroscopic Properties in Azo Derivatives of 2-Hydroxynaphthalene and Their Difluoroboranes Complexes. Materials, 14(12), 3387. https://doi.org/10.3390/ma14123387