EPR Spectroscopy as a Tool to Characterize the Maturity Degree of Humic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
- Decalcification (24 h) with 0.05 M HCl. After centrifugation, the residue was washed with distilled water until neutral
- Extraction (24 h) of the remaining solid with 0.5 M NaOH, with occasional mixing, followed by centrifugation
- Precipitation (24 h) of humic acids from the resulting alkaline extract with 2 M HCl to pH = 2 and centrifugation
- Purification of the resulting humic acids as follows: The humic acid residue was treated with a mixture of HCl/HF (950 mL H2O, 5 mL HCl, 5 mL HF) over a HAs residue, and was treated with distilled water until a zero reaction to chloride was achieved, then freeze-dried.
2.2.2. Elemental Composition
2.2.3. EPR Measurements
2.2.4. EPR Line Deconvolution
2.2.5. Fluorescence Measurements
3. Results and Discussion
3.1. Elemental Composition of Humic Acids
3.2. EPR Results—General Consideration
3.3. The Procedure of ESR Line Deconvolution
3.4. The Interpretation of EPR Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howard, P.J.A.; Howard, D.M.; Lowe, L.E. Effects of tree species and soil physico-chemical conditions on the nature of soil organic matter. Soil Biol. Biochem. 1998, 30, 285–297. [Google Scholar] [CrossRef]
- Debska, B.; Drag, M.; Tobiasova, E. Effect of post-harvest residue of maize, rapeseed, and sunflower on humic acids properties in various soils. Pol. J. Environ. Stud. 2012, 21, 603–613. [Google Scholar]
- Kwiatkowska-Malina, J. The comparison of the structure of humic acids from soil amended with different sources of organic matter. Polish J. Soil Sci. 2015, 48, 57–64. [Google Scholar] [CrossRef]
- Barriquello, M.F.; Costa Saab, S.; Filhoc, N.C.; Martin-Netod, L. Electron paramagnetic resonance characterization of a humic acid-type polymer model. J. Braz. Chem. Soc. 2010, 21, 2302–2307. [Google Scholar] [CrossRef] [Green Version]
- Senesi, N. Application of electron spin resonance (ESR) spectroscopy in soil chemistry. Adv. Soil Sci. 1990, 14, 77–130. [Google Scholar] [CrossRef]
- Perrette, Y.; Poulenard, J.; Protiere, M.; Fanget, B.; Lombard, C.; Miege, C.; Quiers, M.; Nafferchoux, E.; Pepin-Donat, B. Determining soil sources by organic matter EPR fingerprints in two modern speleothems. Org. Geochem. 2015, 88, 59–68. [Google Scholar] [CrossRef]
- Dou, S.; Zhang, J.J.; Li, K. Effect of organic matter applications 13C-NMR spectra of humic acids of soil. Eur. J. Soil. Sci. 2008, 59, 532–539. [Google Scholar] [CrossRef]
- Tinoco, P.; Almendros, G.; González-Vila, F.J.; Sanz, J.; González-Pérez, J.A. Revisiting molecular characteristics responsive for the aromaticity of soil humic acids. J. Soils Sedim. 2015, 15, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, J.; An, T.; Wei, D.; Chi, F.; Baoku Zhou, B. Effects of long-term fertilization on soil humic acid composition and structure in black soil. PLoS ONE 2017, 12, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 2, 431–441. [Google Scholar] [CrossRef]
- Lu, X.Q.; Hanna, J.V.; Johnson, W.D. Source indicators of humic substances: An elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study. Appl. Geochem. 2000, 15, 1019–1033. [Google Scholar] [CrossRef]
- Tan, H.K. Humic Matter in Soil and the Environment, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Poole, C.P.; Farach, H.A. Handbook of Electron Spin Resonance; Springer: New York, NY, USA, 2017. [Google Scholar]
- Cullis, P.R. Electron paramagnetic resonance in inhomogeneously broadened systems: A spin temperature approach. J. Magn. Reson. 1976, 21, 397–418. [Google Scholar] [CrossRef]
- Watanabe, A.; McPhail, D.B.; Maie, N.; Kawasaki, S.; Anderson, H.A.; Cheshire, M.V. Electron spin resonance characteristics of humic acids from a wide range of soil types. Org. Geochem. 2005, 36, 981–990. [Google Scholar] [CrossRef]
- Weiler, M.; Sattel, S.; Giessen, T.; Jung, K.; Ehrhardt, H.; Veerasamy, V.S.; Robertson, J. Preparation and properties of highly tetrahedral hydrogenated amorphous carbon. Phys. Rev. 1996, B53, 1594. [Google Scholar] [CrossRef] [PubMed]
- Chhowalla, M.; Robertson, J.; Chen, C.W.; Silva, S.R.P.; Davis, C.A.; Amaratunga, G.A.J. Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 1997, 81, 139. [Google Scholar] [CrossRef] [Green Version]
- Sattel, S.; Robertson, J.; Ehrhardt, H. Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon. J. Appl. Phys. 1997, 82, 4566. [Google Scholar] [CrossRef]
- Trubetskaya, O.; Trubetskoj, O.; Guyot, G.; Andreux, F.; Richard, C. Fluorescence of soil humic acids and their fractions obtained by tandem size exclusion chromatography–polyacrylamide gel electrophoresis. Org. Geochem. 2002, 33, 213–220. [Google Scholar] [CrossRef]
- Khan, R.U.A.; Carey, J.D.; Silva, S.R.P.; Jones, B.J.; Barklie, R.C. Electron delocalization in amorphous carbon by ion implantation. Phys. Rev. 2001, B63, 121201. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.J.; Barklie, R.C.; Smith, G.; El Mkami, H.; Carey, J.D.; Silva, S.R.P. An EPR study at X- and W-band of defects in a-C:H films in the temperature range 5–300 K. Diam. Rel. Mater. 2003, 12, 116–123. [Google Scholar] [CrossRef]
Sample | C | H | N | O | O/C | O/H | ω * |
---|---|---|---|---|---|---|---|
RT_1 | 35.58 | 44.20 | 1.12 | 19.10 | 0.537 | 0.432 | −0.074 |
RT_3 | 33.22 | 44.88 | 1.93 | 19.97 | 0.601 | 0.445 | 0.025 |
G_0 | 36.31 | 48.36 | 1.10 | 14.23 | 0.392 | 0.294 | −0.457 |
F_1 | 37.28 | 45.27 | 1.61 | 15.84 | 0.425 | 0.350 | −0.235 |
HAs Extracted from Forest Soils | HAs Isolated from Incubated Samples of Plant Material | ||
---|---|---|---|
Ns (spin/g) | (3.24 × 1018 ± 2%) | Ns (spin/g) | (4.72 × 1017 ± 2%) |
ΔBpp-experimental | (0.38 ± 0.005) mT | ΔBpp-experimental | (0.46 ± 0.005) mT |
ΔBpp-Lorentzian | (0.355 ± 0.002) mT | ΔBpp-Lorentzian | (0.45 ± 0.002) mT |
ΔBpp-Gaussian | (1.52 ± 0.002) mT | ΔBpp-Gaussian | (1.505 ± 0.002) mT |
g-value | 2.0024 ± 0.0002 | g-value | 2.0028 ± 0.0002 |
AG/AL-ratio | 2.47 ± 2% | AG/AL -ratio | 3.71 ± 2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debska, B.; Spychaj-Fabisiak, E.; Szulc, W.; Gaj, R.; Banach-Szott, M. EPR Spectroscopy as a Tool to Characterize the Maturity Degree of Humic Acids. Materials 2021, 14, 3410. https://doi.org/10.3390/ma14123410
Debska B, Spychaj-Fabisiak E, Szulc W, Gaj R, Banach-Szott M. EPR Spectroscopy as a Tool to Characterize the Maturity Degree of Humic Acids. Materials. 2021; 14(12):3410. https://doi.org/10.3390/ma14123410
Chicago/Turabian StyleDebska, Bozena, Ewa Spychaj-Fabisiak, Wiesław Szulc, Renata Gaj, and Magdalena Banach-Szott. 2021. "EPR Spectroscopy as a Tool to Characterize the Maturity Degree of Humic Acids" Materials 14, no. 12: 3410. https://doi.org/10.3390/ma14123410
APA StyleDebska, B., Spychaj-Fabisiak, E., Szulc, W., Gaj, R., & Banach-Szott, M. (2021). EPR Spectroscopy as a Tool to Characterize the Maturity Degree of Humic Acids. Materials, 14(12), 3410. https://doi.org/10.3390/ma14123410