Photobiomodulation with Red and Near-Infrared Light Improves Viability and Modulates Expression of Mesenchymal and Apoptotic-Related Markers in Human Gingival Fibroblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Isolation
2.2. Phenotypic Characterization
2.3. Laser Irradiation
2.4. Cell Viability Assay
2.5. Estimation of Extracellular Oxidative Stress and Inflammation Markers
2.6. Analysis of Chosen Genes Expression
2.7. Analysis of Chosen Genes Expression
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBM | photobiomodulation |
LLLI | low-level laser irradiation |
LLLT | low-level laser treatment |
ROS | reactive oxygen species |
NO | nitric oxide |
ATP | adenosine triphosphate |
cAMP | cyclic adenosine monophosphate |
H2D-CF-DA | 2′,7′-dichlorodihydrofluorescein diacetate |
DMEM | Dulbecco’s modified Eagle’s medium |
MSCs | mesenchymal stem cells |
ECM | extracellular matrix |
WALT | World Association for Photobiomodulation Therapy |
ACTB | β-actin |
GAPDH | glyceraldehyde 3-phosphate dehydrogenase |
P53 | tumor protein P53 |
CASP3 | caspase 3 |
CASP9 | caspase 9 |
BAX | BCL2 associated X protein |
BCL2 | B-cell lymphoma 2 |
CD44 | cluster of differentiation 44 |
THY1/CD90 | thymocyte differentiation antigen 1/cluster of differentiation 90 |
ENG/CD105 | endoglin/cluster of differentiation 105 |
AU | arbitrary units |
References
- Sobouti, F.; Khatami, M.; Heydari, M.; Barati, M. The Role of Low-Level Laser in Periodontal Surgeries. J. Lasers Med. Sci. 2015, 6, 45–50. [Google Scholar] [CrossRef]
- Goldman, L.; Hornby, P.; Meyer, R.; Goldman, B. Impact of the Laser on Dental Caries. Nature 1964, 203, 417. [Google Scholar] [CrossRef]
- Stübinger, S. Advances in bone surgery: The Er:YAG laser in oral surgery and implant dentistry. Clin. Cosmet. Investig. Dent. 2010, 2, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Cobb, C.M.; Low, S.B.; Coluzzi, D.J. Lasers and the Treatment of Chronic Periodontitis. Dent. Clin. N. Am. 2010, 54, 35–53. [Google Scholar] [CrossRef]
- Bjordal, J.M.; Johnson, M.I.; Iversen, V.; Aimbire, F.; Lopes-Martins, R. Low-Level Laser Therapy in Acute Pain: A Systematic Review of Possible Mechanisms of Action and Clinical Effects in Randomized Placebo-Controlled Trials. Photomed. Laser Surg. 2006, 24, 158–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, A.L.; Esper, L.A.; Sbrana, M.C.; Ribeiro, I.W.; Kaizer, R.O. Utilization of Low-Intensity Laser During Healing of Free Gingival Grafts. Photomed. Laser Surg. 2009, 27, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation—Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef] [PubMed]
- Grzech-Leśniak, K.; Nowicka, J.; Pajączkowska, M.; Matys, J.; Szymonowicz, M.; Kuropka, P.; Rybak, Z.; Dobrzyński, M.; Dominiak, M. Effects of Nd:YAG laser irradiation on the growth of Candida albicans and Streptococcus mutans: In vitro study. Lasers Med Sci. 2018, 34, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.C.F.; De Sousa, G.R.; Silveira, L.D.B.; Prates, R.; Pinotti, M.; Ribeiro, M. Clinical Study of the Gingiva Healing after Gingivectomy and Low-Level Laser Therapy. Photomed. Laser Surg. 2006, 24, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozcelik, O.; Haytac, M.C.; Kunin, A.; Seydaoglu, G. Improved wound healing by low-level laser irradiation after gingivectomy operations: A controlled clinical pilot study. J. Clin. Periodontol. 2008, 35, 250–254. [Google Scholar] [CrossRef]
- Arunachalam, L.T.; Sudhakar, U.; Janarthanam, A.S.; Das, N.M. Effect of low level laser therapy on revascularization of free gingival graft using ultrasound Doppler flowmetry. J. Indian Soc. Periodontol. 2014, 18, 403–407. [Google Scholar] [CrossRef]
- Makhlouf, M.; Dahaba, M.M.; Tunér, J.; Eissa, S.A.; Harhash, T.A.-H. Effect of Adjunctive Low Level Laser Therapy (LLLT) on Nonsurgical Treatment of Chronic Periodontitis. Photomed. Laser Surg. 2012, 30, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Grzech-Leśniak, K. Making Use of Lasers in Periodontal Treatment: A New Gold Standard? Photomed. Laser Surg. 2017, 35, 513–514. [Google Scholar] [CrossRef]
- Kujawa, J.; Pasternak, K.; Zavodnik, I.; Irzmanski, R.; Wrobel, D.; Bryszewska, M.; Pasternak-Mnich, K. The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation. Lasers Med. Sci. 2014, 29, 1663–1668. [Google Scholar] [CrossRef]
- Zamani, A.R.N.; Saberianpour, S.; Geranmayeh, M.H.; Bani, F.; Haghighi, L.; Rahbarghazi, R. Modulatory effect of photobiomodulation on stem cell epigenetic memory: A highlight on differentiation capacity. Lasers Med Sci. 2020, 35, 299–306. [Google Scholar] [CrossRef]
- George, S.; Hamblin, M.R.; Abrahamse, H. Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts. J. Photochem. Photobiol. B Biol. 2018, 188, 60–68. [Google Scholar] [CrossRef]
- Tuner, J.; Hode, L. The Laser Therapy Handbook: A Guide for Research Scientists, Doctors, Dentists, Veterinarians and Other Interested Parties within the Medical Field; Prima Books: Indianapolis, IN, USA, 2007. [Google Scholar]
- Huang, Y.-Y.; Chen, A.C.-H.; Carroll, J.D.; Hamblin, M.R. Biphasic Dose Response in Low Level Light Therapy. Dose-Response 2009, 7, 358–383. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Zee, K.-Y.; Lai, M.K.; Corbet, E. Clinical and Radiographic Investigation of the Adjunctive Effects of a Low-Power He-Ne Laser in the Treatment of Moderate to Advanced Periodontal Disease: A Pilot Study. Photomed. Laser Surg. 2009, 27, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Hakki, S.S.; Bozkurt, S.B. Effects of different setting of diode laser on the mRNA expression of growth factors and type I collagen of human gingival fibroblasts. Lasers Med. Sci. 2011, 27, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Calderín, S.; García-Nuñez, J.A.; Gómez, C. Short-term clinical and osteoimmunological effects of scaling and root planing complemented by simple or repeated laser phototherapy in chronic periodontitis. Lasers Med. Sci. 2012, 28, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aykol, G.; Baser, U.; Maden, I.; Kazak, Z.; Onan, U.; Tanrikulu-Kucuk, S.; Ademoglu, E.; Issever, H.; Yalcin, F. The Effect of Low-Level Laser Therapy as an Adjunct to Non-Surgical Periodontal Treatment. J. Periodontol. 2011, 82, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; McGrath, C.; Jin, L.; Zhang, C.; Yang, Y. The effectiveness of low-level laser therapy as an adjunct to non-surgical periodontal treatment: A meta-analysis. J. Periodontal Res. 2017, 52, 8–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alghamdi, K.M.; Kumar, A.; Moussa, N.A. Low-level laser therapy: A useful technique for enhancing the proliferation of various cultured cells. Lasers Med. Sci. 2011, 27, 237–249. [Google Scholar] [CrossRef]
- Schindl, A.; Schindl, M.; Pernerstorfer-Schön, H.; Schindl, L. Low-intensity laser therapy: A review. J. Investig. Med. 2000, 48, 312–326. [Google Scholar] [PubMed]
- Choi, E.-J.; Yim, J.-Y.; Koo, K.-T.; Seol, Y.-J.; Lee, Y.-M.; Ku, Y.; Rhyu, I.-C.; Chung, C.-P.; Kim, T.-I. Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts. J. Periodontal Implant. Sci. 2010, 40, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Lopes, L.; Rigau, J.; Zângaro, R.A.; Guidugli-Neto, J.; Marques Jaeger, M.M. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence*. Lasers Surg. Med. 2001, 29, 179–184. [Google Scholar] [CrossRef]
- WALT Dosage Recommendations. Available online: https://waltza.co.za/documentation-links/recommendations/dosage-recommendations/ (accessed on 24 May 2021).
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Kocherova, I.; Stefańska, K.; Bryl, R.; Perek, J.; Pieńkowski, W.; Zakova, J.; Crha, I.; Ventruba, P.; Mozdziak, P.; Ješeta, M. Apoptosis-related genes expression in primary in vitro culture of human ovarian granulosa cells. Med. J. Cell Biol. 2020, 8, 176–182. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bao, K.; Akgül, B.; Bostanci, N. Establishment and Characterization of Immortalized Gingival Epithelial and Fibroblastic Cell Lines for the Development of Organotypic Cultures. Cells Tissues Organs 2014, 199, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Sterczała, B.; Grzech-Leśniak, K.; Michel, O.; Trzeciakowski, W.; Dominiak, M.; Jurczyszyn, K. Assessment of Human Gingival Fibroblast Proliferation after Laser Stimulation In Vitro Using Different Laser Types and Wavelengths (1064, 980, 635, 450, and 405 nm)—Preliminary Report. J. Pers. Med. 2021, 11, 98. [Google Scholar] [CrossRef]
- Papadelli, A.; Kyriakidou, K.; Kotsakis, G.A.; Pepelassi, E.; Kallis, A.; Vrotsos, I.A.; Karoussis, I.K. Immunomodulatory effects of Nd:YAG (1064 nm) and diode laser (810 nm) wavelengths to LPS-challenged human gingival fibroblasts. Arch. Oral Biol. 2021, 122, 104982. [Google Scholar] [CrossRef]
- Frozanfar, A.; Ramezani, M.; Rahpeyma, A.; Khajehahmadi, S.; Arbab, H.R. The effects of low level laser therapy on the expression of collagen type I gene and proliferation of human gingival fibroblasts (HGF3-PI 53): In vitro study. Iran. J. Basic Med. Sci. 2013, 16, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.N.; De Paula Eduardo, C.; Matson, E. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg. Med. 2002, 31, 263–267. [Google Scholar] [CrossRef]
- Etemadi, A.; Namin, S.T.; Hodjat, M.; Kosarieh, E.; Hakimiha, N. Assessment of the Photobiomodulation Effect of a Blue Diode Laser on the Proliferation and Migration of Cultured Human Gingival Fibroblast Cells: A Preliminary In Vitro Study. J. Lasers Med. Sci. 2020, 11, 491–496. [Google Scholar] [CrossRef]
- Reza Talebi-Ardakani, M.; Torshabi, M.; Karami, E.; Arbabi, E.; Rezaei Esfahrood, Z. In Vitro Study of Er:YAG and Er, Cr:YSGG Laser Irradiation on Human Gingival Fibroblast Cell Line. Acta Med. Iran. 2016, 54, 251–255. [Google Scholar]
- Ogita, M.; Tsuchida, S.; Aoki, A.; Satoh, M.; Kado, S.; Sawabe, M.; Nanbara, H.; Kobayashi, H.; Takeuchi, Y.; Mizutani, K.; et al. Increased cell proliferation and differential protein expression induced by low-level Er:YAG laser irradiation in human gingival fibroblasts: Proteomic analysis. Lasers Med. Sci. 2014, 30, 1855–1866. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Aoki, A.; Iwasaki, K.; Mizutani, K.; Katagiri, S.; Suda, T.; Ichinose, S.; Ogita, M.; Pavlic, V.; Izumi, Y. Biological effects of Er:YAG laser irradiation on the proliferation of primary human gingival fibroblasts. J. Biophotonics 2018, 11, e201700157. [Google Scholar] [CrossRef]
- Ren, C.; McGrath, C.; Jin, L.; Zhang, C.; Yang, Y. Effect of diode low-level lasers on fibroblasts derived from human periodontal tissue: A systematic review of in vitro studies. Lasers Med. Sci. 2016, 31, 1493–1510. [Google Scholar] [CrossRef]
- Ladiz, M.A.R.; Mirzaei, A.; Hendi, S.S.; Najafi-Vosough, R.; Hooshyarfard, A.; Gholami, L. Effect of photobiomodulation with 810 and 940 nm diode lasers on human gingival fibroblasts. Dent. Med. Probl. 2020, 57, 369–376. [Google Scholar] [CrossRef]
- Victor, E.C.; Goulardins, J.; Cardoso, V.O.; Silva, R.E.C.; Brugnera, A.; Bussadori, S.K.; Fernandes, K.P.S.; Mesquita-Ferrari, R.A. Effect of Photobiomodulation in Lipopolysaccharide-Treated Myoblasts. Photobiomodulation Photomed. Laser Surg. 2021, 39, 30–37. [Google Scholar] [CrossRef]
- Courtois, E.; Bouleftour, W.; Guy, J.-B.; Louati, S.; Bensadoun, R.-J.; Rodriguez-Lafrasse, C.; Magné, N. Mechanisms of PhotoBioModulation (PBM) focused on oral mucositis prevention and treatment: A scoping review. BMC Oral Health 2021, 21, 1–11. [Google Scholar] [CrossRef]
- Liu, C.; Mo, L.; Niu, Y.; Li, X.; Zhou, X.; Xu, X. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage. Front. Physiol. 2017, 8, 439. [Google Scholar] [CrossRef] [PubMed]
- Karu, T.I.; Pyatibrat, L.V.; Afanasyeva, N.I. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med. 2005, 36, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Karu, T.I.; Pyatibrat, L.V.; Afanasyeva, N.I. A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem. Photobiol. 2004, 80, 366–372. [Google Scholar] [CrossRef]
- Kwon, H.; Lim, W.; Kim, J.; Jeon, S.; Kim, S.; Karna, S.; Cha, H.; Kim, O.; Choi, H. Effect of 635 nm irradiation on high glucose-boosted inflammatory responses in LPS-induced MC3T3-E1 cells. Lasers Med. Sci. 2012, 28, 717–724. [Google Scholar] [CrossRef]
- Ohsugi, Y.; Niimi, H.; Shimohira, T.; Hatasa, M.; Katagiri, S. In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration. Int. J. Mol. Sci. 2020, 21, 9002. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, F.; Petecchia, L.; Tavian, M.; De Villeroché, V.J.; A Rossi, G.; Brouty-Boyé, D. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab. Investig. 2005, 85, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-I.; Chen, S.-K.; Ling, Q.-D.; Chien, C.-C.; Liu, H.-T.; Chan, S.-H. Multilineage Differentiation Potential of Fibroblast-like Stromal Cells Derived from Human Skin. Tissue Eng. Part A 2010, 16, 1491–1501. [Google Scholar] [CrossRef] [PubMed]
- Chandravanshi, B.; Bhonde, R. Reprogramming mouse embryo fibroblasts to functional islets without genetic manipulation. J. Cell. Physiol. 2018, 233, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, K.; Sicker, M.; Schmelzer, E.; Rupf, T.; Salvetter, J.; Schulz-Siegmund, M.; Bader, A. Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp. Dermatol. 2008, 17, 925–932. [Google Scholar] [CrossRef]
- Huang, H.-I.; Chen, S.-K.; Wang, R.Y.-L.; Shen, C.-R.; Cheng, Y.-C. Human foreskin fibroblast-like stromal cells can differentiate into functional hepatocytic cells. Cell Biol. Int. 2013, 37, 1308–1319. [Google Scholar] [CrossRef] [PubMed]
- Ichim, T.E.; O’Heeron, P.; Kesari, S. Fibroblasts as a practical alternative to mesenchymal stem cells. J. Transl. Med. 2018, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Moraes, D.A.; Sibov, T.T.; Pavon, L.F.; Alvim, P.Q.; Bonadio, R.S.; Da Silva, J.R.; Pic-Taylor, A.; Toledo, O.A.; Marti, L.C.; Azevedo, R.B.; et al. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res. Ther. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wong, S.S.; Taype, C.A.; Kim, J.; Shentu, T.-P.; Espinoza, C.R.; Finley, J.C.; Bradley, J.E.; Head, B.P.; Patel, H.H.; et al. Thy-1 interaction with Fas in lipid rafts regulates fibroblast apoptosis and lung injury resolution. Lab. Investig. 2017, 97, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Mokoena, D.R.; Houreld, N.N.; Kumar, S.S.D.; Abrahamse, H. Photobiomodulation at 660 nm Stimulates Fibroblast Differentiation. Lasers Surg. Med. 2020, 52, 671–681. [Google Scholar] [CrossRef]
- Aguado, T.; García, M.; García, A.; Ferrer-Mayorga, G.; Martínez-Santamaría, L.; Del Río, M.; Botella, L.-M.; Sanchez, T.A. Raloxifene and n-acetylcysteine Ameliorate TGF-Signalling in Fibroblasts from Patients with Recessive Dominant Epidermolysis Bullosa. Cells 2020, 9, 2108. [Google Scholar] [CrossRef]
- Gerrits, T.; Zandbergen, M.; Wolterbeek, R.; Bruijn, J.A.; Baelde, H.J.; Scharpfenecker, M. Endoglin Promotes Myofibroblast Differentiation and Extracellular Matrix Production in Diabetic Nephropathy. Int. J. Mol. Sci. 2020, 21, 7713. [Google Scholar] [CrossRef]
- Kato, M.; Placencio-Hickok, V.R.; Madhav, A.; Haldar, S.; Tripathi, M.; Billet, S.; Mishra, R.; Smith, B.; Rohena-Rivera, K.; Agarwal, P.; et al. Heterogeneous cancer-associated fibroblast population potentiates neuroendocrine differentiation and castrate resistance in a CD105-dependent manner. Oncogene 2018, 38, 716–730. [Google Scholar] [CrossRef]
- Karic, V.; Chandran, R.; Abrahamse, H. Laser-Induced Differentiation of Human Adipose-Derived Stem Cells to Temporomandibular Joint Disc Cells. Lasers Surg. Med. 2021, 53, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Guo, S.; Xiao, S.; Ding, Y. Enhanced wound healing and osteogenic potential of photodynamic therapy on human gingival fibroblasts. Photodiagnosis Photodyn. Ther. 2020, 32, 101967. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence (5′–3′) | Product Size (bp) |
---|---|---|
P53 | GCTGAATGAGGCCTTGGAAC TTATGGCGGGAGGTAGACTG | 114 |
CASP3 | ATGTCGATGCAGCAAACCTC GCACACAAACAAAACTGCTCC | 150 |
CASP9 | TGATGTCGGTGCTCTTGAGA CGCAACTTCTCACAGTCGAT | 162 |
BAX | TGACATGTTTTCTGACGGCA CACCCTGGTCTTGGATCCA | 179 |
BCL2 | ATGTGTGTGGAGAGCGTCAA GAAATCAAACAGAGGCCGCA | 168 |
CD44 | TCTGTGCAGCAAACAACACA TAGGGTTGCTGGGGTAGATG | 234 |
THY1/CD90 | CTAGTGGACCAGAGCCTTCG TGGAGTGCACACGTGTAGGT | 236 |
ENG/CD105 | CACTAGCCAGGTCTCGAAGG CTGAGGACCAGAAGCACCTC | 165 |
ACTB | AAAGACCTGTACGCCAACAC CTCAGGAGGAGCAATGATCTTG | 132 |
GAPDH | TCAGCCGCATCTTCTTTTGC ACGACCAAATCCGTTGACTC | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocherova, I.; Bryja, A.; Błochowiak, K.; Kaczmarek, M.; Stefańska, K.; Matys, J.; Grzech-Leśniak, K.; Dominiak, M.; Mozdziak, P.; Kempisty, B.; et al. Photobiomodulation with Red and Near-Infrared Light Improves Viability and Modulates Expression of Mesenchymal and Apoptotic-Related Markers in Human Gingival Fibroblasts. Materials 2021, 14, 3427. https://doi.org/10.3390/ma14123427
Kocherova I, Bryja A, Błochowiak K, Kaczmarek M, Stefańska K, Matys J, Grzech-Leśniak K, Dominiak M, Mozdziak P, Kempisty B, et al. Photobiomodulation with Red and Near-Infrared Light Improves Viability and Modulates Expression of Mesenchymal and Apoptotic-Related Markers in Human Gingival Fibroblasts. Materials. 2021; 14(12):3427. https://doi.org/10.3390/ma14123427
Chicago/Turabian StyleKocherova, Ievgeniia, Artur Bryja, Katarzyna Błochowiak, Mariusz Kaczmarek, Katarzyna Stefańska, Jacek Matys, Kinga Grzech-Leśniak, Marzena Dominiak, Paul Mozdziak, Bartosz Kempisty, and et al. 2021. "Photobiomodulation with Red and Near-Infrared Light Improves Viability and Modulates Expression of Mesenchymal and Apoptotic-Related Markers in Human Gingival Fibroblasts" Materials 14, no. 12: 3427. https://doi.org/10.3390/ma14123427
APA StyleKocherova, I., Bryja, A., Błochowiak, K., Kaczmarek, M., Stefańska, K., Matys, J., Grzech-Leśniak, K., Dominiak, M., Mozdziak, P., Kempisty, B., & Dyszkiewicz-Konwińska, M. (2021). Photobiomodulation with Red and Near-Infrared Light Improves Viability and Modulates Expression of Mesenchymal and Apoptotic-Related Markers in Human Gingival Fibroblasts. Materials, 14(12), 3427. https://doi.org/10.3390/ma14123427