Computer Analysis of the Porous Structure of Activated Carbons Derived from Various Biomass Materials by Chemical Activation
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion of the Obtained Results
3.1. The Results of the Analysis of the Benzene Adsorption Isotherms
3.2. The Results of the Analysis of Elemental Composition
3.3. The Results of the Analysis via Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belo, C.R.; da Paixão Cansado, I.P.; Mourão, P.A.M. Synthetic polymers blend used in the production of high activated carbon for pesticides removals from liquid phase. Environ. Technol. 2017, 38, 285–296. [Google Scholar] [CrossRef]
- He, P.; Valtchev, V.; Haw, K.G.; Shichen, Y.; Tang, L.; Fang, Q.; Qiu, S. Carbon beads with well-defined pore structure derived from ion-exchange resin beads. J. Mater. Chem. A 2019, 7, 18285–18294. [Google Scholar] [CrossRef]
- Liu, G.; Lin, S.; Pile, L.; Fang, Z.; Wang, G. Effect of potassium permanganate and pyrolysis temperature on the biochar produced from rice straw and suitability of biochars for heavy metal (CD & PB) immobilization in paper sludge. Fresenius Environ. Bull. 2018, 27, 9008–9018. [Google Scholar]
- Kwiatkowski, M.; Kalderis, D. A complementary analysis of the porous structure of biochars obtained from biomass. Carbon Lett. 2020, 30, 325–329. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Broniek, E. An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Coll. Surf. A 2017, 529, 443–453. [Google Scholar] [CrossRef]
- Chen, W.; He, F.; Zhang, S.; Xv, H.; Xv, Z. Development of porosity and surface chemistry of textile waste jute-based activated carbon by physical activation. Environ. Sci. Pollut. Res. Int. 2018, 25, 9840–9848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, T.; Zhi, J.; Zheng, Q.; Chen, Q.; Zhang, C.; Li, Y. Utilization of Jujube biomass to prepare biochar by pyrolysis and activation: Characterization, adsorption characteristics, and mechanisms for nitrogen. Materials 2020, 13, 5594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, L.; Liu, Y.; Feng, R.; Zou, T.; Zhang, Y.; Kang, Y.; Zhou, P. Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: Kinetic, equilibrium, and thermodynamic studies. Micropor. Mesopor. Mater. 2021, 315, 110904. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Kalderis, D.; Diamadopoulos, E. Numerical analysis of the influence of the impregnation ratio on the microporous structure formation of activated carbons, prepared by chemical activation of waste biomass with phosphoric acid. J. Phys. Chem. Solids 2017, 105, 81–85. [Google Scholar] [CrossRef]
- Ma, R.; Qin, X.; Liu, Z.; Fu, Y. Adsorption property, kinetic and equilibrium studies of activated carbon fiber prepared from liquefied wood by ZnCl2 activation. Materials 2019, 12, 1377. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Chen, Z.; Cheng, Y.; Wang, X.; Yang, X.; Wang, Z. Preparation and electrochemical performance of orange peel based-activated carbons activated by different activators. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 574, 221–227. [Google Scholar] [CrossRef]
- Kaewtrakulchai, N.; Faungnawakij, K.; Eiad-Ua, A. Parametric study on microwave-assisted pyrolysis combined KOH activation of oil palm male flowers derived nanoporous carbons. Materials 2020, 13, 2876. [Google Scholar] [CrossRef]
- Guo, J.; Song, Y.; Ji, X.; Ji, L.; Cai, L.; Wang, Y.; Zhang, H.; Song, W. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials 2019, 12, 241. [Google Scholar] [CrossRef] [Green Version]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. Review on activated carbons by chemical activation with FeCl3. J. Carbon Res. 2020, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Taslim, T.; Sinaga, F.; Iskandinata, I.; Irawan, F. Furfural synthesis from Mikania mircantha using sulfonated carbon catalyst derived from candlenut shell. Int. J. Eng. Res. Technol. 2020, 13, 2546–2552. [Google Scholar] [CrossRef]
- Borhan, A.; Yusuf, S. Activation of rubber-seed shell waste by malic acid as potential CO2 removal: Isotherm and kinetics studies. Materials 2020, 13, 4970. [Google Scholar] [CrossRef]
- Melouki, R.; Ouadah, A.; Llewellyn, P.L. The CO2 adsorption behavior study on activated carbon synthesized from olive waste. J. CO2 Util. 2020, 42, 101292. [Google Scholar] [CrossRef]
- Ahmed, R.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Ali, M.U. Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A review. J. Clean. Prod. 2020, 242, 118409. [Google Scholar] [CrossRef]
- Gopinath, K.P.; Vo, D.V.N.; Gnana Prakash, D.; Antonysamy, A.J.; Viswanathan, S.; Jayaseelan, A. Environmental applications of carbon-based materials: A review. Environ. Chem. Lett. 2021, 19, 557–582. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Hu, X. Analysis of the effect of conditions of preparation of nitrogen-doped activated carbons derived from lotus leaves by activation with sodium amide on the formation of their porous structure. Materials 2021, 14, 1540. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.L.A.; Rahmatika, A.M.; Kitamoto, Y.; Nguyen, M.T.T.; Ogi, T. Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin. J. Colloid Interface Sci. 2021, 589, 252–263. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Dubinin, M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 1960, 60, 235–241. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Fierro, V.; Celzard, A. Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Colloid Interface Sci. 2017, 486, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, M.; Fierro, V.; Celzard, A. Confrontation of various adsorption models for assessing the porous structure of activated carbons. Adsorption 2019, 25, 1673–1682. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, M.; Delgadillo, D.P.V. Computer analysis of the effect of the type of activating agent on the formation of the porous structure of activated carbon monoliths. J. Mater. Res. Technol. 2019, 8, 4457–4463. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Broniek, E.; Fierro, V.; Celzard, A. An evaluation of the impact of the amount of potassium hydroxide on the porous structure development of activated carbons. Materials 2021, 14, 2045. [Google Scholar] [CrossRef] [PubMed]
R | SBET [m2/g] | VDR [cm3/g] | VT [cm3/g] | LBET No. | VhA [cm3/g] | QA/RT | BC | α | β | h | wid |
---|---|---|---|---|---|---|---|---|---|---|---|
MAAC | |||||||||||
1 | 998 | 0.404 | 0.435 | 16 | 0.409 | −6.46 | 35.00 | 1.00 | 1.82 | 0 | 0.98 |
2 | 1607 | 0.653 | 0.681 | 1 | 0.667 | −5.94 | 6.74 | 0.04 | 3.40 | 0 | 0.99 |
3 | 2336 | 0.962 | 1.021 | 12 | 1.010 | −7.16 | 7.07 | 0.03 | 3.55 | 7 | 0.97 |
EBAC | |||||||||||
1 | 1088 | 0.449 | 0.476 | 3 | 0.467 | −5.40 | 27.22 | 0.009 | 1.01 | 2 | 0.91 |
2 | 1885 | 0.759 | 0.798 | 20 | 0.787 | −5.03 | 34.57 | 0.007 | 1.05 | 3 | 0.89 |
3 | 2953 | 1.181 | 1.244 | 16 | 1.225 | −4.12 | 35.00 | 0.70 | 1.00 | 0 | 0.93 |
HBAC | |||||||||||
1 | 992 | 0.403 | 0.428 | 21 | 0.422 | −5.52 | 22.86 | 0.008 | 2.86 | 3 | 0.95 |
2 | 1819 | 0.728 | 0.766 | 18 | 0.773 | −4.85 | 34.40 | 0.001 | 1.12 | 2 | 0.94 |
3 | 3005 | 1.103 | 1.166 | 6 | 1.176 | −4.03 | 35.00 | 0.001 | 1.00 | 3 | 0.99 |
POAC | |||||||||||
1 | 1055 | 0.429 | 0.462 | 6 | 0.442 | −5.49 | 34.07 | 0.00 | 1.05 | 3 | 0.57 |
2 | 2019 | 0.810 | 0.853 | 18 | 0.789 | −4.88 | 32.92 | 0.00 | 1.07 | 2 | 0.81 |
3 | 3013 | 1.163 | 1.240 | 20 | 1.254 | −4.06 | 5.06 | 0.00 | 1.65 | 3 | 0.62 |
HTAC | |||||||||||
1 | 1041 | 0.423 | 0.449 | 18 | 0.666 | −6.42 | 35.00 | 0.52 | 1.00 | 2 | 0.63 |
2 | 1903 | 0.748 | 0.790 | 18 | 1.523 | −5.95 | 35.00 | 0.69 | 1.00 | 2 | 0.55 |
3 | 3131 | 1.165 | 1.254 | 14 | 1.234 | −5.71 | 1.30 | 0.01 | 1.07 | 9 | 0.36 |
PNAC | |||||||||||
1 | 1066 | 0.434 | 0.466 | 19 | 0.504 | −5.06 | 35.00 | 0.21 | 1.01 | 3 | 0.61 |
2 | 1834 | 0.756 | 0.796 | 3 | 1.258 | −4.67 | 35.00 | 0.53 | 1.00 | 2 | 0.58 |
3 | 2787 | 1.107 | 1.181 | 3 | 1.197 | −3.82 | 22.64 | 0.00 | 1.16 | 2 | 0.47 |
Sample | The Percentage of the Element, % | |||
---|---|---|---|---|
C | O | Al | Cu | |
M | 20.63 | 63.62 | 0.50 | 0.28 |
MAC/3 | 41.67 | 56.46 | 1.52 | 0.35 |
E | 21.73 | 69.61 | 3.43 | 0.31 |
EAC/3 | 40.20 | 54.38 | 3.67 | 0.42 |
HB | 21.56 | 75.98 | 1.10 | 0.23 |
HBAC/3 | 41.49 | 55.31 | 2.48 | 0.34 |
PO | 20.25 | 67.63 | 1.91 | 0.25 |
POAC/3 | 37.70 | 58.69 | 3.12 | 0.38 |
HT | 22.39 | 75.68 | 1.10 | 0.22 |
HTAC/3 | 41.28 | 56.53 | 1.69 | 0.36 |
PN | 24.28 | 68.64 | 1.42 | 0.24 |
PNAC/3 | 42.06 | 55.98 | 1.31 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, M.; Broniek, E. Computer Analysis of the Porous Structure of Activated Carbons Derived from Various Biomass Materials by Chemical Activation. Materials 2021, 14, 4121. https://doi.org/10.3390/ma14154121
Kwiatkowski M, Broniek E. Computer Analysis of the Porous Structure of Activated Carbons Derived from Various Biomass Materials by Chemical Activation. Materials. 2021; 14(15):4121. https://doi.org/10.3390/ma14154121
Chicago/Turabian StyleKwiatkowski, Mirosław, and Elżbieta Broniek. 2021. "Computer Analysis of the Porous Structure of Activated Carbons Derived from Various Biomass Materials by Chemical Activation" Materials 14, no. 15: 4121. https://doi.org/10.3390/ma14154121
APA StyleKwiatkowski, M., & Broniek, E. (2021). Computer Analysis of the Porous Structure of Activated Carbons Derived from Various Biomass Materials by Chemical Activation. Materials, 14(15), 4121. https://doi.org/10.3390/ma14154121