An Improved Mechanistic-Empirical Creep Model for Unsaturated Soft and Stabilized Soils
Abstract
:1. Introduction
2. Development of Mechanistic-Empirical Creep Model for Unsaturated Soils
2.1. Typical Empirical Semi-Empirical Creep Models
2.2. Formulation of Mechanistic-Empirical Creep Model
- (1)
- Determine the SWCCs of soft and stabilized soils.
- (2)
- Determine the relevant shear strength parameters of soft and stabilized soils.
- (3)
- Determine the coefficients ε0, ρ, β, m and n from the creep tests at different stress levels and moisture conditions.
3. Materials and Laboratory Tests
3.1. Materials
3.2. Test Design
3.3. Test Methods
3.3.1. Preparation of Specimens
3.3.2. Shear Strength Test
3.3.3. Soil–Water Characteristic Curve Test
3.3.4. Unconfined Compressive Strength Test and Creep Test
4. Results of Laboratory Soil Tests
4.1. SWCC Test Results
4.2. Shear Strength Test Results
4.3. Unconfined Compressive Strength Test Results
5. Modeling of Creep Test Results of Unsaturated Soils
5.1. Determination of Creep Model Parameters
5.2. Comparison of Different Creep Models
6. Model Implementation for Predicting Subgrade Deformation
7. Conclusions
- (1)
- The MEC model takes into account the stress dependence based on mechanical principles, and incorporates moisture sensitivity using matric suction and shear strength parameters. This formulation is intended to characterize the creep deformation behavior of unsaturated soils under arbitrary water content and arbitrary stress condition.
- (2)
- The deformation of unsaturated soils was analyzed by the MEC model under various stress and moisture conditions. The results show that the predicted results of the MEC model are consistent with the experimental data with very high R-squared values.
- (3)
- Compared with the classical unsaturated soil creep models, the MEC model only needs one set of parameters for different stress levels and moisture conditions, while the classical models (like the Mesri and improved Mesri models) require a different set of parameters when the water content is changed. In addition, the MEC model agrees with the experimental data better for stabilized soils, and provides better accuracy in predicting creep deformations at high stress levels.
- (4)
- In the FE analysis, the MEC model is implemented to analyze the creep behavior of subgrade soils. Loading level and moisture have a great effect on the deformation of soil foundation, especially soft soils. Under heavy loading and a wet state, the deformation of soft soil increases rapidly.
- (5)
- After stabilization, the deformation of the soil foundation is obviously reduced. Under the same load and moisture level, the deformation of soft soil is largest, followed by lime soil and RHA–lime-stabilized soil, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S.J.; Lu, S.F.; Shi, Z.M.; Shui, W.H. Densification of loosely deposited soft soils using the combined consolidation method. Eng. Geol. 2014, 181, 169–179. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Cao, Z.; Ren, C. A combined method to predict the long-term settlements of roads on soft soil under cyclic traffic loadings. Acta Geotech. 2018, 13, 1215–1226. [Google Scholar] [CrossRef]
- Araújo, G.L.; Palmeira, E.M.; Macêdo, Í.L. Comparisons between predicted and observed behaviour of a geosynthetic reinforced abutment on soft soil. Eng. Geol. 2012, 147, 101–113. [Google Scholar] [CrossRef]
- Arulrajah, A.; Bo, M.W.; Leong, M.; Disfani, M.M. Piezometer measurements of prefabricated vertical drain improvement of soft soils under land reclamation fill. Eng. Geol. 2013, 162, 33–42. [Google Scholar] [CrossRef]
- Consoli, N.C.; Winter, D.; Rilho, A.S.; Festugato, L.; dos Santos Teixeira, B. A testing procedure for predicting strength in artificially cemented soft soils. Eng. Geol. 2015, 195, 327–334. [Google Scholar] [CrossRef]
- Consoli, N.C.; Rosa, D.A.; Cruz, R.C.; Rosa, A.D. Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil. Eng. Geol. 2011, 122, 328–333. [Google Scholar] [CrossRef]
- Guidobaldi, G.; Cambi, C.; Cecconi, M.; Deneele, D.; Paris, M.; Russo, G.; Vitale, E. Multi-scale analysis of the mechanical improvement induced by lime addition on a pyroclastic soil. Eng. Geol. 2017, 221, 193–201. [Google Scholar] [CrossRef]
- Yilmaz, Y. Compaction and strength characteristics of fly ash and fiber amended clayey soil. Eng. Geol. 2015, 188, 168–177. [Google Scholar] [CrossRef]
- Sargent, P.; Hughes, P.N.; Rouainia, M.; White, M.L. The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Eng. Geol. 2013, 152, 96–108. [Google Scholar] [CrossRef]
- Yi, Y.; Zheng, X.; Liu, S.; Al-Tabbaa, A. Comparison of reactive magnesia- and carbide slag-activated ground granulated blastfurnace slag and portland cement for stabilisation of a natural soil. Appl. Clay Sci. 2015, 111, 21–26. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, S.; Cai, G.; Puppala, A.J. Experimental investigation of thermal and mechanical properties of lignin treated silt. Eng. Geol. 2015, 196, 1–11. [Google Scholar] [CrossRef]
- Fatehi, H.; Abtahi, S.M.; Hashemolhosseini, H.; Hejazi, S.M. A novel study on using protein based biopolymers in soil strengthening. Constr. Build. Mater. 2018, 167, 813–821. [Google Scholar] [CrossRef]
- Kharade, A.S. Waste product ’bagasse ash’ from sugar industry can be used as stabilizing material for expansive soils. Int. J. Res. Eng. Technol. 2014, 3, 506–512. [Google Scholar]
- Ilie, N.M.; Crcu, A.P.; Nagy, A.C.; Ciubotaru, V.C.; Kisfaludi-Bak, Z. Comparative study on soil stabilization with polyethylene waste materials and binders. Procedia Eng. 2017, 181, 444–451. [Google Scholar] [CrossRef]
- Rahgozar, M.A.; Saberian, M.; Li, J. Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transp. Geotech. 2018, 14, 52–60. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhang, T.; Cai, G.Q. Research on Technology and Engineering Application of Silt Subgrade Solidified by Lignin-based Industrial By-product. China J. Highw. Transp. 2018, 31, 1–11. [Google Scholar]
- Gu, F.; Moraes, R.; Chen, C.; Yin, F.; Watson, D.; Taylor, A. Effects of Additional Antistrip Additives on Durability and Moisture Susceptibility of Granite-Based Open-Graded Friction Course. J. Mater. Civ. Eng. 2021, 33, 04021245. [Google Scholar] [CrossRef]
- Oliveira, P.V.; Correia, A.A.; Garcia, M.R. Effect of stress level and binder composition on secondary compression of an artificially stabilized soil. J. Geotech. Geoenviron. Eng. 2013, 139, 810–820. [Google Scholar] [CrossRef]
- Oliveira, P.V.; Correia, A.A.; Garcia, M.R. Effect of organic matter content and curing conditions on the creep behavior of an artificially stabilized soil. J. Mater. Civ. Eng. 2014, 24, 868–875. [Google Scholar] [CrossRef]
- Sivasithamparam, N.; Karstunen, M.; Bonnier, P. Modelling creep behaviour of anisotropic soft soils. Comput. Geotech. 2015, 69, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Augustesen, A.; Liingaard, M.; Lade, P.V. Evaluation of time-dependent behavior of soils. Int. J. Geomech. 2004, 4, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.W. Research on Consolidation of Clays; Massachusetts Institute of Technology: Cambridge, MA, USA, 1942. [Google Scholar]
- Singh, A.; Mitchell, J.K. General stress-strain-time function for soils. ASCE Soil Mech. Found. Div. J. 1968, 94, 21–46. [Google Scholar] [CrossRef]
- Mesri, G.; Febrescordero, E.; Shields, D.R.; Castro, A. Shear stress-strain-time behaviour of clays. Géotechnique 1981, 32, 407–411. [Google Scholar] [CrossRef]
- Lin, H.D.; Wang, C.C. Stress-strain-time function of clay. J. Geotech. Geoenviron. Eng. 1998, 124, 289–296. [Google Scholar] [CrossRef]
- Lu, P.; Zeng, J.; Sheng, Q. Creep tests on soft clay and its empirical models. Rock Soil Mech. 2008, 29, 1041. [Google Scholar]
- Wang, S.; Qi, J.; Yin, Z.; Zhang, J.; Wei, M. A simple rheological element based creep model for frozen soils. Cold Reg. Sci. Technol. 2014, 106, 47–54. [Google Scholar] [CrossRef]
- Ma, W.B.; Rao, Q.H.; Peng, L.; Guo, S.C.; Kang, F. Shear creep parameters of simulative soil for deep-sea sediment. J. Cent. South Univ. 2014, 21, 4682–4689. [Google Scholar] [CrossRef]
- Zhao, M.H.; Xiao, Y.; Chen, C.F. Laboratory experiment of the rheological property of soft clay and the improved xiyuan model. J. Hunan Univ. 2004, 31, 48–52. [Google Scholar]
- Rajesh, S.; Choudhary, K.; Chandra, S. A generalized model for geosynthetic reinforced railway tracks resting on soft clays. Int. J. Numer. Anal. Methods Geomech. 2015, 39, 310–326. [Google Scholar] [CrossRef]
- Huang, W.; Liu, D.Y.; Zhao, B.Y.; Feng, Y.B.; Xia, Y.C. Study on the rheological properties and constitutive model of shenzhen mucky soft soil. J. Eng. Sci. Technol. Rev. 2014, 7, 55–61. [Google Scholar]
- Perzyna, P. The constitutive equations for work-hardening and rate sensitive plastic materials. Proc. Vib. Probl. 1963, 4, 281–290. [Google Scholar]
- Yin, J.H.; Graham, J. Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour. Can. Geotech. J 1989, 26, 199–209. [Google Scholar] [CrossRef]
- Yin, J.H.; Graham, J. Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils. Can. Geotech. J. 2011, 36, 736–745. [Google Scholar] [CrossRef]
- Sheng, D. Review of fundamental principles in modelling unsaturated soil behaviour. Comput. Geotech. 2011, 38, 757–776. [Google Scholar] [CrossRef]
- Gens, A.; Sánchez, M.; Sheng, D. On constitutive modelling of unsaturated soils. Acta Geotech. 2006, 1, 137. [Google Scholar] [CrossRef]
- Mesri, G. Time and stress-compressibility interrelationship. J. Geotech. Eng. Div. 1977, 103, 417–430. [Google Scholar] [CrossRef]
- Tseng, K.H.; Lytton, R.L. Prediction of Permanent Deformation in Flexible Pavement Materials; ASTM International: West Conshohocken, PA, USA, 1989. [Google Scholar]
- Gu, F.; Zhang, Y.; Droddy, C.V.; Rong, L.; Lytton, R.L. Development of a new mechanistic empirical rutting model for unbound granular material. J. Mater. Civ. Eng. 2016, 28, 04016051. [Google Scholar] [CrossRef]
- Lai, X.L.; Wang, S.M.; Qin, H.B.; Liu, X.F. Unsaturated creep model of the sliding zone soils of qianjiangping landslide in three gorges and its empirical models. In Proceedings of the International Symposium on Unsaturated Soil Mechanics & Deep Geological Nuclear Waste Disposal, Shanghai, China, 24 August 2009. [Google Scholar]
- Lai, X.L.; Wang, S.M.; Ye, W.M.; Cui, Y.J. Experimental investigation on the creep behavior of an unsaturated clay. Can. Geotech. J. 2014, 51, 621–628. [Google Scholar] [CrossRef]
- Lytton, R.L. Foundations and pavements on unsaturated soils. In Proceedings of the International Conference on Unsaturated Soils, Unsat 95, Paris, France, 6–8 September 1996. [Google Scholar]
- Lu, N.; Likos, W.J. Unsaturated Soil Mechanics; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Fredlund, D.G.; Morgenstern, N.R.; Widger, R.A. The shear strength of unsaturated soils. Can. Geotech. J. 1978, 15, 313–321. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. The Methods of Soils for Highway Engineering; JTG E40-2007; China Communications Press: Beijing, China, 2007; pp. 130–138, 194–217. (In Chinese) [Google Scholar]
- ASTM D5298-92. Standard test method for measurement of soil potential(suction) using filter paper. In Annual Book of ASTM Standards; American Society of Testing and Materials: Philadelphia, PA, USA, 1992; pp. 156–161. [Google Scholar]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, Z.; Ma, F.; Luo, X. Analysis of strength development and soil–water characteristics of rice husk ash–lime stabilized soft soil. Materials 2019, 12, 3873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omairey, E.L.; Gu, F.; Zhang, Y. An equation-based multiphysics modelling framework for oxidative ageing of asphalt pavements. J. Clean. Prod. 2020, 280, 124401. [Google Scholar] [CrossRef]
- American Association of State Highway and Transportation Officials. Mechanistic-Empirical Pavement Design Guide: A Manual of Practice; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2008; p. 1000. [Google Scholar]
- Hu, X. Measurements of the Distribution of the Vehicle Tire and the Response Stress in the Asphalt Pavement. Ph.D. Thesis, Department of the Road and Airport Engineering, Tongji University, Shanghai, China, 2003. (In Chinese). [Google Scholar]
- Zhang, L. Urban Road Engineering; People’s Communications Publishing House: Beijing, China, 2008. (In Chinese) [Google Scholar]
Soil Type | Liquid Limit, WL/% | Plastic Limit, WP/% | Plastic Index, IP | Optimum Moisture Content/% | Maximum Dry Density/(kg/m3) |
---|---|---|---|---|---|
Silt clay | 38 | 19 | 19 | 18 | 1798 |
Materials | SiO2 | CaO | Al2O3 | MgO | Others |
---|---|---|---|---|---|
Lime | - | 86.2 | - | 0.68 | - |
RHA | 88.09 | 0.98 | 1.25 | 0.34 | - |
Materials | hr | af | bf | cf |
---|---|---|---|---|
Soft soil | 3000 | 2000 | 0.509 | 1.581 |
Lime soil | 3000 | 3059 | 0.589 | 1.192 |
RHA–lime soil | 3000 | 7980 | 0.787 | 1.241 |
Materials | w (%) | θ (%) | f | hm (kPa) | α1 | Kn | Km | |||
---|---|---|---|---|---|---|---|---|---|---|
Soft soil | 21 | 36.4 | 1 | 124 | 3.885 | 21.25 | 22.88 | 0.172 | 4.75 | 20.92 |
18 | 31.2 | 1 | 993 | 3.885 | 21.25 | 43.54 | 0.344 | 4.22 | 130.86 | |
15 | 26.0 | 1 | 2439 | 3.885 | 21.25 | 44.11 | 0.349 | 4.20 | 266.14 | |
Lime soil | 21 | 36.7 | 2.11 | 71 | 52.105 | 46.54 | 47.00 | 0.372 | 54.28 | 60.39 |
18 | 31.5 | 1 | 723 | 52.105 | 46.54 | 55.90 | 0.440 | 46.62 | 214.85 | |
15 | 26.2 | 1 | 2276 | 52.105 | 46.54 | 61.54 | 0.479 | 40.59 | 489.82 | |
RHA–lime soil | 21 | 36.0 | 1 | 504 | 62.57 | 44.98 | 53.21 | 0.420 | 59.03 | 171.04 |
18 | 30.9 | 1 | 2214 | 62.57 | 44.98 | 61.73 | 0.480 | 48.48 | 529.32 | |
15 | 25.8 | 1 | 5995 | 62.57 | 44.98 | 64.80 | 0.498 | 44.10 | 1088.41 |
MEC Model Parameters | M Model Parameters | IM Model Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ε0 | ρ | β | m | n | λ | λ | a | b | ||||
Soft soil 21% | 5.948 | 0.012 | 0.318 | 1.706 | −1.327 | 0.523 | 0.519 | 0.084 | 0.523 | 0.084 | −0.010 | 0.540 |
Soft soil 18% | 0.648 | 0.435 | 0.056 | 0.276 | 0.056 | |||||||
Soft soil 15% | 0.751 | 0.309 | 0.066 | 0.751 | 0.066 | |||||||
Lime soil 21% | 19.047 | 0.012 | 0.340 | 1.225 | −0.021 | 0.169 | 0.576 | 0.061 | 0.169 | 0.061 | −0.008 | 0.572 |
Lime soil 18% | 0.289 | 0.509 | 0.052 | 0.289 | 0.052 | |||||||
Lime soil 15% | 0.326 | 0.391 | 0.079 | 0.326 | 0.079 | |||||||
RHA–lime soil 21% | 58.449 | 0.013 | 0.311 | 1.674 | −0.253 | 0.158 | 0.868 | 0.051 | 0.158 | 0.051 | −0.009 | 0.938 |
RHA–lime soil 18% | 0.239 | 0.768 | 0.073 | 0.239 | 0.073 | |||||||
RHA–lime soil 15% | 0.478 | 0.374 | 0.083 | 0.478 | 0.083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Huang, Z.; Luo, X. An Improved Mechanistic-Empirical Creep Model for Unsaturated Soft and Stabilized Soils. Materials 2021, 14, 4146. https://doi.org/10.3390/ma14154146
Jiang X, Huang Z, Luo X. An Improved Mechanistic-Empirical Creep Model for Unsaturated Soft and Stabilized Soils. Materials. 2021; 14(15):4146. https://doi.org/10.3390/ma14154146
Chicago/Turabian StyleJiang, Xunli, Zhiyi Huang, and Xue Luo. 2021. "An Improved Mechanistic-Empirical Creep Model for Unsaturated Soft and Stabilized Soils" Materials 14, no. 15: 4146. https://doi.org/10.3390/ma14154146
APA StyleJiang, X., Huang, Z., & Luo, X. (2021). An Improved Mechanistic-Empirical Creep Model for Unsaturated Soft and Stabilized Soils. Materials, 14(15), 4146. https://doi.org/10.3390/ma14154146