Utilization of Eco-Friendly Waste Generated Nanomaterials in Water-Based Drilling Fluids; State of the Art Review
Abstract
:1. Introduction
2. Drilling Fluids and Rheological Properties
2.1. Mud Density or Weight
2.2. Plastic Viscosity
2.3. Yield Point
2.4. Gel Strength
2.5. Filtrate Loss and Mud Cake Thickness
3. Waste Derivatives in Drilling Fluids
3.1. Emergence of Waste Materials in the Environment
3.2. Waste Materials in Drilling Fluids
3.3. Bentonite in Drilling Fluids
4. Effects of Nanomaterials in Drilling Fluids
Lubricity of Drilling Fluids
5. Challenges and Limitations
Future Recommendations
- A comprehensive investigation of the interactions between waste-derived materials and content of drilling fluids, such as bentonite, should be undertaken.
- Cost-effectiveness of waste material usage requires more attention prior to commercialization to ensure consistency in generating drilling fluids with improved rheological properties.
- In-depth analysis is required to develop extensive methodologies for the production of additives based on waste-derived materials.
- Future studies should consider the analysis of the lubricity of drilling fluids using waste-derived materials. Extensive analysis should be undertaken to examine the morphological properties of drilling fluids.
- The potential to convert waste materials into nanomaterials, and the reproducibility of the conversion, should be considered for a variety of applications.
- A comprehensive quantitative analysis of nanomaterials used in drilling operations is necessary. Particular focus is required to determine optimum concentrations to improve conservation of resources.
- More studies should strive to investigate the mechanisms of interaction between nanomaterials and other additives present in drilling fluids.
- A comparison of drilling fluid optimization between water-based drilling fluids using nanomaterials, and synthetic and oil-based drilling fluids, should be undertaken. The comparison should be conducted in relation to conventional base fluids subjected to high temperature and pressure conditions.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Li, C.; Reniers, G.; Yang, F. Safety and security of oil and gas pipeline transportation: A systematic analysis of research trends and future needs using WoS. J. Clean. Prod. 2021, 279, 123583. [Google Scholar] [CrossRef]
- Li, X.; Jiang, G.; He, Y.; Chen, G. Novel starch composite fluid loss additives and their applications in environmentally friendly water-based drilling fluids. Energy Fuels 2021, 35, 2506–2513. [Google Scholar] [CrossRef]
- Medhi, S.; Chowdhury, S.; Gupta, D.K.; Mazumdar, A. An investigation on the effects of silica and copper oxide nanoparticles on rheological and fluid loss property of drilling fluids. J. Pet. Explor. Prod. Technol. 2020, 10, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Amiri, A.; Polycarpou, A.A. Enhancements in the tribological performance of environmentally friendly water-based drilling fluids using additives. Appl. Surf. Sci. 2020, 527, 146822. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Yang, N.-W.; Wang, Y.-G. Preparation of nitration-oxidation lignosulfonate as an eco-friendly drilling fluid additive. Pet. Sci. Technol. 2014, 32, 1661–1668. [Google Scholar] [CrossRef]
- Chang, X.; Sun, J.; Xu, Z.; Lv, K.; Dai, Z.; Zhang, F.; Huang, X.; Liu, J. Synthesis of a novel environment-friendly filtration reducer and its application in water-based drilling fluids. Colloids Surf. A. 2019, 568, 284–293. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Yang, N.W.; Wang, Y.G. Preparation and evaluation of sodium hydroxymethyl lignosulfonate as eco-friendly drilling fluid additive. Adv. Mater. Res. 2012, 415, 629–632. [Google Scholar] [CrossRef]
- de Oliveira, V.; dos Santos Alves, K.; da Silva-Junior, A.; Araújo, R.; Balaban, R.; Hilliou, L. Testing carrageenans with different chemical structures for water-based drilling fluid application. J. Mol. Liq. 2020, 299, 112139. [Google Scholar] [CrossRef]
- Yang, M.; Luo, D.; Chen, Y.; Li, G.; Tang, D.; Meng, Y. Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling. Appl. Energy. 2019, 238, 1471–1483. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Kamal, M.S.; Al-Harthi, M.A. High molecular weight copolymers as rheology modifier and fluid loss additive for water-based drilling fluids. J. Mol. Liq. 2018, 252, 133–143. [Google Scholar] [CrossRef]
- Cheraghian, G.; Wu, Q.; Mostofi, M.; Li, M.-C.; Afrand, M.; Sangwai, J.S. Effect of a novel clay/silica nanocomposite on water-based drilling fluids: Improvements in rheological and filtration properties. Colloids Surf. A 2018, 555, 339–350. [Google Scholar] [CrossRef]
- Sharma, V.P.; Mahto, V. Studies on less expansive environmentally safe polymers for development of water based drilling fluids. In SPE Asia Pacific Oil & Gas Conference and Exhibition; OnePetro: Kuala Lumpur, Malaysia, 2006. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Y.; Zhou, F.; Chu, P.K. Effects of carbon ash on rheological properties of water-based drilling fluids. J. Pet. Sci. Eng. 2012, 100, 1–8. [Google Scholar] [CrossRef]
- Omotioma, M.; Ejikeme, P.; Mbah, G. Comparative analysis of the effects of cashew and mango extracts on the rheological properties of water based mud. J. Eng. Res. Appl. 2014, 4, 56–61. [Google Scholar]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Dunn-Norman, S.; Alashwak, N.A.; Alshammari, A.F.; Alkhamis, M.M.; Mutar, R.A.; Ashammarey, A. Evaluation of environmentally friendly drilling fluid additives in water-based drilling mud. In SPE Europec Featured at 81st EAGE Conference and Exhibition; OnePetro: Kuala Lumpur, Malaysia, 2019. [Google Scholar] [CrossRef]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Dunn-Norman, S.; Al-Alwani, M.A.; Alshammari, A.F.; Albazzaz, H.W.; Alkhamis, M.M.; Rusul, A.M.; Al-Bazzaz, W.H. Proposing a new eco-friendly drilling fluid additive to enhance the filtration properties of water-based drilling fluid systems. In SPE Gas & Oil Technology Showcase and Conference; OnePetro: Kuala Lumpur, Malaysia, 2019. [Google Scholar] [CrossRef]
- Ismail, A.R.; Mohd, N.M.; Basir, N.F.; Oseh, J.O.; Ismail, I.; Blkoor, S.O. Improvement of rheological and filtration characteristics of water-based drilling fluids using naturally derived henna leaf and hibiscus leaf extracts. J. Pet. Explor. Prod. Technol. 2020, 10, 3541–3556. [Google Scholar] [CrossRef]
- Oseh, J.O.; Norrdin, M.M.; Farooqi, F.; Ismail, R.A.; Ismail, I.; Gbadamosi, A.O.; Agi, A.J. Experimental investigation of the effect of henna leaf extracts on cuttings transportation in highly deviated and horizontal wells. J. Pet. Explor. Prod. Technol. 2019, 9, 2387–2404. [Google Scholar] [CrossRef] [Green Version]
- Karakosta, K.; Mitropoulos, A.C.; Kyzas, G.Z. A review in nanopolymers for drilling fluids applications. J. Mol. Struct. 2021, 1227, 129702. [Google Scholar] [CrossRef]
- Werner, B.; Myrseth, V.; Saasen, A. Viscoelastic properties of drilling fluids and their influence on cuttings transport. J. Pet. Sci. Eng. 2017, 156, 845–851. [Google Scholar] [CrossRef]
- Dantas, A.; Leite, R.; Nascimento, R.; Amorim, L. The influence of chemical additives in filtration control of inhibited drilling fluids. Braz. J. Pet. Gas. 2014, 8. [Google Scholar] [CrossRef]
- Das, B.; Chatterjee, R. Wellbore stability analysis and prediction of minimum mud weight for few wells in Krishna-Godavari Basin, India. Int. J. Rock Mech. Min. Sci. 2017, 93, 30–37. [Google Scholar] [CrossRef]
- Ebikapaye, J. Effects of temperature on the density of water based drilling mud. J. Appl. Sci. Environ. Manag. 2018, 22, 406–408. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.A.; Shadizadeh, S.R.; Shah, K.; Bahadori, A. An accurate model to predict drilling fluid density at wellbore conditions. Egypt. J. Pet. 2018, 27, 1–10. [Google Scholar] [CrossRef]
- Elkatatny, S. Enhancing the rheological properties of water-based drilling fluid using micronized starch. Arab. J. Sci. Eng. 2019, 44, 5433–5442. [Google Scholar] [CrossRef]
- Basfar, S.; Mohamed, A.; Elkatatny, S.; Al-Majed, A. A Combined Barite–Ilmenite Weighting Material to Prevent Barite Sag in Water-Based Drilling Fluid. Materials 2019, 12, 1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delikesheva, D.; Syzdykov, A.K.; Ismailova, J.; Kabdushev, A.; Bukayeva, G. Measurement of the Plastic Viscosity and Yield Point of Drilling Fluids. Int. J. Eng. Res. Technol. 2020, 13, 58–65. [Google Scholar] [CrossRef]
- Maiti, M.; Ranjan, R.; Chaturvedi, E.; Bhaumik, A.K.; Mandal, A. Formulation and characterization of water-based drilling fluids for gas hydrate reservoirs with efficient inhibition properties. J. Dispers. Sci. Technol. 2021, 42, 338–351. [Google Scholar] [CrossRef]
- Alakbari, F.; Elkatatny, S.; Kamal, M.S.; Mahmoud, M. Optimizing the gel strength of water-based drilling fluid using clays for drilling horizontal and multi-lateral wells. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition; OnePetro: Kuala Lumpur, Malaysia, 2018. [Google Scholar] [CrossRef]
- Mohamed, A.; Al-Afnan, S.; Elkatatny, S.; Hussein, I. Prevention of barite sag in water-based drilling fluids by a urea-based additive for drilling deep formations. Sustainability 2020, 12, 2719. [Google Scholar] [CrossRef] [Green Version]
- Novriansyah, A. Experimental analysis of cassava starch as a fluid loss control agent on drilling mud. Mater. Today Proc. 2021, 39, 1094–1098. [Google Scholar]
- Dejtaradon, P.; Hamidi, H.; Chuks, M.H.; Wilkinson, D.; Rafati, R. Impact of ZnO and CuO nanoparticles on the rheological and filtration properties of water-based drilling fluid. Colloids Surf. A 2019, 570, 354–367. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Jarni, H.H.; Aftab, A.; Ismail, A.R.; Saady, N.M.C.; Sahito, M.F.; Keshavarz, A.; Iglauer, S.; Sarmadivaleh, M. Nanomaterial-based drilling fluids for exploitation of unconventional reservoirs: A review. Energies 2020, 13, 3417. [Google Scholar] [CrossRef]
- Bologna, M.; Aquino, G. Deforestation and world population sustainability: A quantitative analysis. Sci. Rep. 2020, 10, 7631. [Google Scholar] [CrossRef]
- Rautela, R.; Arya, S.; Vishwakarma, S.; Lee, J.; Kim, K.-H.; Kumar, S. E-waste management and its effects on the environment and human health. Sci. Total Environ. 2021, 773, 145623. [Google Scholar] [CrossRef]
- Castillo-Giménez, J.; Montañés, A.; Picazo-Tadeo, A.J. Performance and convergence in municipal waste treatment in the European Union. Waste Manag. 2019, 85, 222–231. [Google Scholar] [CrossRef]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management. 2012. Available online: https://openknowledge.worldbank.org/handle/10986/17388 (accessed on 1 March 2012).
- Hoornweg, D.; Bhada-Tata, P.; Kennedy, C. Environment: Waste production must peak this century. Nat. News 2013, 502, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirbas, A. Waste management, waste resource facilities and waste conversion processes. Energy Convers. Manag. 2011, 52, 1280–1287. [Google Scholar] [CrossRef]
- Khatib, I.A. Municipal solid waste management in developing countries: Future challenges and possible opportunities. Integr. Waste Manag. 2011, 2, 35–48. [Google Scholar]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Awasthi, M.K.; Dussap, C.-G.; Pandey, A. Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. J. Hazard. Mater. 2020, 398, 123019. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Goonetilleke, D.; Gaikwad, V.; Pramudita, J.C.; Joshi, R.K.; Sharma, N.; Sahajwalla, V. Activated carbon from e-waste plastics as a promising anode for sodium-ion batteries. ACS Sustain. Chem. Eng. 2019, 7, 10310–10322. [Google Scholar] [CrossRef]
- Suchorab, Z.; Franus, M.; Barnat-Hunek, D. Properties of Fibrous Concrete Made with Plastic Optical Fibers from E-Waste. Materials 2020, 13, 2414. [Google Scholar] [CrossRef]
- Prochon, M.; Marzec, A.; Dzeikala, O. Hazardous Waste Management of Buffing Dust Collagen. Materials 2020, 13, 1498. [Google Scholar] [CrossRef] [Green Version]
- Tanskanen, P. Management and recycling of electronic waste. Acta Mater. 2013, 61, 1001–1011. [Google Scholar] [CrossRef]
- Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nat. News 2015, 524, 155. [Google Scholar] [CrossRef]
- Huang, Y.; Mei, L.; Chen, X.; Wang, Q. Recent developments in food packaging based on nanomaterials. Nanomaterials 2018, 8, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dankwa, O.; Ackumey, S.; Amorin, R. Investigating the potential use of waste vegetable oils to produce synthetic base fluids for drilling mud formulation. In SPE Nigeria Annual International Conference and Exhibition; OnePetro: Kuala Lumpur, Malaysia, 2018. [Google Scholar] [CrossRef]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Dunn-Norman, S.; Al-Alwani, M.A.; Alshammari, A.F.; Alkhamis, M.M.; Mutar, R.A.; Al-Bazzaz, W.H. Experimental investigation of environmentally friendly drilling fluid additives (mandarin peels powder) to substitute the conventional chemicals used in water-based drilling fluid. J. Pet. Explor. Prod. Technol. 2020, 10, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Dunn-Norman, S.; Al-Alwani, M.A.; Alshammari, A.F.; Albazzaz, H.W.; Alkhamis, M.M.; Alashwak, N.F.; Mutar, R.A. Insights into the application of new eco-friendly drilling fluid additive to improve the fluid properties in water-based drilling fluid systems. J. Pet. Sci. Eng. 2019, 183, 106424. [Google Scholar] [CrossRef]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Alkhamis, M.M.; Dunn-Norman, S. Utilizing a new eco-friendly drilling mud additive generated from wastes to minimize the use of the conventional chemical additives. J. Pet. Explor. Prod. Technol. 2020, 10, 3467–3481. [Google Scholar] [CrossRef]
- Bayat, A.E.; Moghanloo, P.J.; Piroozian, A.; Rafati, R. Experimental investigation of rheological and filtration properties of water-based drilling fluids in presence of various nanoparticles. Colloids Surf. A 2018, 555, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Fazelabdolabadi, B.; Khodadadi, A.A.; Sedaghatzadeh, M. Thermal and rheological properties improvement of drilling fluids using functionalized carbon nanotubes. Appl. Nanosci. 2015, 5, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Hassani, S.; Vu, T.N.; Rosli, N.R.; Esmaeely, S.N.; Choi, Y.-S.; Young, D.; Nesic, S. Wellbore integrity and corrosion of low alloy and stainless steels in high pressure CO2 geologic storage environments: An experimental study. Int. J. Greenh. Gas Control. 2014, 23, 30–43. [Google Scholar] [CrossRef]
- Li, X.; Jiang, G.; Shen, X.; Li, G. Poly-L-arginine as a high-performance and biodegradable shale inhibitor in water-based drilling fluids for stabilizing wellbore. ACS Sustain. Chem. Eng. 2020, 8, 1899–1907. [Google Scholar] [CrossRef]
- Ghaderi, S.; Haddadi, S.A.; Davoodi, S.; Arjmand, M. Application of sustainable saffron purple petals as an eco-friendly green additive for drilling fluids: A rheological, filtration, morphological, and corrosion inhibition study. J. Mol. Liq. 2020, 315, 113707. [Google Scholar] [CrossRef]
- da Silva, Í.G.; Lucas, E.F.; Advincula, R. On the use of an agro waste, Miscanthus x. Giganteus, as filtrate reducer for water-based drilling fluids. J. Disper. Sci. Technol. 2020, 1–10. [Google Scholar] [CrossRef]
- Joshi, P.; Goyal, S.; Singh, R.; Thakur, K. Development of water based drilling fluid using tamarind seed powder. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Murtaza, M.; Tariq, Z.; Zhou, X.; Al-Shehri, D.; Mahmoud, M.; Kamal, M.S. Okra as an environment-friendly fluid loss control additive for drilling fluids: Experimental & modeling studies. J. Pet. Sci. Eng. 2021, 204, 108743. [Google Scholar]
- Wiśniowski, R.; Skrzypaszek, K.; Małachowski, T. Selection of a Suitable Rheological Model for Drilling Fluid Using Applied Numerical Methods. Energies 2020, 13, 3192. [Google Scholar] [CrossRef]
- Magzoub, M.I.; Ibrahim, M.H.; Nasser, M.S.; El-Naas, M.H.; Amani, M. Utilization of Steel-Making Dust in Drilling Fluids Formulations. Processes 2020, 8, 538. [Google Scholar] [CrossRef]
- Haile, A.; Gelebo, G.G.; Tesfaye, T.; Mengie, W.; Mebrate, M.A.; Abuhay, A.; Limeneh, D.Y. Pulp and paper mill wastes: Utilizations and prospects for high value-added biomaterials. Bioresour. Bioprocess. 2021, 8, 35. [Google Scholar] [CrossRef]
- Zhong, H.; Gao, X.; Zhang, X.; Chen, A.; Qiu, Z.; Kong, X.; Huang, W. Minimizing the filtration loss of water-based drilling fluid with sustainable basil seed powder. Petroleum 2021. [Google Scholar] [CrossRef]
- Rita, N.; Khalid, I.; Efras, M.R. Drilling mud performances consist of CMC made by carton waste and Na2CO3 for reducing lost circulation. Mater. Today Proc. 2021, 39, 1099–1102. [Google Scholar] [CrossRef]
- Zhou, G.; Qiu, Z.; Zhong, H.; Zhao, X.; Kong, X. Study of Environmentally Friendly Wild Jujube Pit Powder as a Water-Based Drilling Fluid Additive. ACS Omega 2021, 6, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Dunn-Norman, S.; Salem, E.; Knickerbocker, M.D.; Alashwak, N.F.; Mutar, R.A.; Al-Bazzaz, W.H. Laboratory Study of Environmentally Friendly Drilling Fluid Additives Banana Peel Powder for Modifying the Drilling Fluid Characteristics in Water-Based Muds. In International Petroleum Technology Conference; OnePetro: Kuala Lumpur, Malaysia, 2020. [Google Scholar] [CrossRef]
- Okon, A.N.; Akpabio, J.U.; Tugwell, K.W. Evaluating the locally sourced materials as fluid loss control additives in water-based drilling fluid. Heliyon 2020, 6, e04091. [Google Scholar] [CrossRef]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Dunn-Norman, S.; Alkhamis, M.M.; Feliz, J.D. Full-set measurements dataset for a water-based drilling fluid utilizing biodegradable environmentally friendly drilling fluid additives generated from waste. Data Brief 2020, 28, 104945. [Google Scholar] [CrossRef]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Dunn-Norman, S.; Al-Alwani, M.A.; Al-Bazzaz, W.H.; Alshammari, A.F.; Albazzaz, H.W.; Mutar, R.A. Experimental investigation of bio-enhancer drilling fluid additive: Can palm tree leaves be utilized as a supportive eco-friendly additive in water-based drilling fluid system? J. Pet. Explor. Prod. Technol. 2020, 10, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Dunn-Norman, S.; Alashwak, N.A.; Alshammari, A.F.; Alkhamis, M.M.; W Albazzaz, H.; Mutar, R.A.; Alsaba, M.T. Environmental friendly drilling fluid additives: Can food waste products be used as thinners and fluid loss control agents for drilling fluid? In SPE Symposium: Asia Pacific Health, Safety, Security, Environment and Social Responsibility; OnePetro: Kuala Lumpur, Malaysia, 2019. [Google Scholar] [CrossRef]
- Majid, N.F.F.; Katende, A.; Ismail, I.; Sagala, F.; Sharif, N.M.; Yunus, M.A.C. A comprehensive investigation on the performance of durian rind as a lost circulation material in water based drilling mud. Petroleum 2019, 5, 285–294. [Google Scholar] [CrossRef]
- Wajheeuddin, M.; Hossain, M.E. Development of an environmentally-friendly water-based mud system using natural materials. Arab. J. Sci. Eng. 2018, 43, 2501–2513. [Google Scholar] [CrossRef]
- Davoodi, S.; SA, A.R.; Jamshidi, S.; Jahromi, A.F. A novel field applicable mud formula with enhanced fluid loss properties in high pressure-high temperature well condition containing pistachio shell powder. J. Pet. Sci. Eng. 2018, 162, 378–385. [Google Scholar] [CrossRef]
- Al-Saba, M.; Amadi, K.; Al-Hadramy, K.; Al Dushaishi, M.; Al-Hameedi, A.; Alkinani, H. Experimental investigation of bio-degradable environmental friendly drilling fluid additives generated from waste. In SPE International Conference and Exhibition on Health, Safety, Security, Environment, and Social Responsibility; OnePetro: Kuala Lumpur, Malaysia, 2018. [Google Scholar] [CrossRef]
- Hossain, M.E.; Wajheeuddin, M. The use of grass as an environmentally friendly additive in water-based drilling fluids. Pet. Sci. 2016, 13, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Ghazali, N.A.; Mohd, T.A.T.; Alias, N.H.; Azizi, A.; Harun, A.A. The Effect of Lemongrass as Lost Circulation Material (LCM) to the Filtrate and Filter Cake Formation; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014. [Google Scholar] [CrossRef]
- Okon, A.N.; Udoh, F.D.; Bassey, P.G. Evaluation of rice husk as fluid loss control additive in water-based drilling mud. In SPE Nigeria Annual International Conference and Exhibition; OnePetro: Kuala Lumpur, Malaysia, 2014. [Google Scholar] [CrossRef]
- Azizi, A.; Ibrahim, M.S.N.; Hamid, K.H.K.; Sauki, A.; Ghazali, N.A.; Mohd, T.A.T. Agarwood waste as a new fluid loss control agent in water-based drilling fluid. Int. J. Sci. Eng. 2013, 5, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, T.A.; Chinonyere, P.C. Sawdust as a filtration control and density additives in water-based drilling mud. Int. J. Sci. Eng. Res. 2012, 3, 1–2. [Google Scholar]
- Iscan, A.; Kok, M. Effects of walnut shells on the rheological properties of water-based drilling fluids. Energy Sources Part A 2007, 29, 1061–1068. [Google Scholar] [CrossRef]
- Alcheikh, I.; Ghosh, B. A comprehensive review on the advancement of non-damaging drilling fluids. Int. J. Petrochem. Res. 2017, 1, 61–72. [Google Scholar] [CrossRef]
- Li, M.-C.; Wu, Q.; Lei, T.; Mei, C.; Xu, X.; Lee, S.; Gwon, J. Thermothickening Drilling Fluids Containing Bentonite and Dual-Functionalized Cellulose Nanocrystals. Energy Fuels 2020, 34, 8206–8215. [Google Scholar] [CrossRef]
- da Câmara, P.C.; Madruga, L.Y.; Marques, N.d.N.; Balaban, R.C. Evaluation of polymer/bentonite synergy on the properties of aqueous drilling fluids for high-temperature and high-pressure oil wells. J. Mol. Liq. 2021, 327, 114808. [Google Scholar] [CrossRef]
- Dong, W.; Pu, X.; Ren, Y.; Zhai, Y.; Gao, F.; Xie, W. Thermoresponsive bentonite for water-based drilling fluids. Materials 2019, 12, 2115. [Google Scholar] [CrossRef] [Green Version]
- Abdou, M.; Al-Sabagh, A.; Ahmed, H.E.-S.; Fadl, A. Impact of barite and ilmenite mixture on enhancing the drilling mud weight. Egypt. J. Pet. 2018, 27, 955–967. [Google Scholar] [CrossRef]
- Magzoub, M.; Mahmoud, M.; Nasser, M.; Hussein, I.; Elkatatny, S.; Sultan, A. Thermochemical upgrading of calcium bentonite for drilling fluid applications. J. Energy Res. Technol. 2019, 141, 042902. [Google Scholar] [CrossRef]
- Karagüzel, C.; Çetinel, T.; Boylu, F.; Cinku, K.; Çelik, M. Activation of (Na, Ca)-bentonites with soda and MgO and their utilization as drilling mud. Appl. Clay Sci. 2010, 48, 398–404. [Google Scholar] [CrossRef]
- Li, M.-C.; Wu, Q.; Han, J.; Mei, C.; Lei, T.; Lee, S.-Y.; Gwon, J. Overcoming Salt Contamination of Bentonite Water-Based Drilling Fluids with Blended Dual-Functionalized Cellulose Nanocrystals. ACS Sustain. Chem. Eng. 2020, 8, 11569–11578. [Google Scholar] [CrossRef]
- Xie, B.; Tchameni, A.P.; Luo, M.; Wen, J. A novel thermo-associating polymer as rheological control additive for bentonite drilling fluid in deep offshore drilling. Mater. Lett. 2021, 284, 128914. [Google Scholar] [CrossRef]
- Ikram, R.; Jan, B.M.; Ahmad, W. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. J. Mater. Res. Technol. 2020, 9, 11587–11610. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, Y.; Zhu, Y.; Long, C.; Su, L.; Liu, S.; Tang, Z. Applications of nanomaterials in asymmetric photocatalysis: Recent progress, challenges, and opportunities. Adv. Mater. 2021, 33, 2001731. [Google Scholar] [CrossRef] [PubMed]
- Gong, N.; Sheppard, N.C.; Billingsley, M.M.; June, C.H.; Mitchell, M.J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 2021, 16, 25–36. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.S.; Xu, X.G.; Ma, C.; Yang, Y.P.; Yuan, X.B. Study and Application of Nanomaterials in Drilling Fluids. Adv. Mater. Res. 2012, 535–537, 323–328. [Google Scholar] [CrossRef]
- Cheraghian, G. Nanoparticles in drilling fluid: A review of the state-of-the-art. J. Mater. Res. Technol. 2021, 13, 737–753. [Google Scholar] [CrossRef]
- Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541–5588. [Google Scholar] [CrossRef]
- Hajiabadi, S.H.; Aghaei, H.; Ghabdian, M.; Kalateh-Aghamohammadi, M.; Esmaeilnezhad, E.; Choi, H.J. On the attributes of invert-emulsion drilling fluids modified with graphene oxide/inorganic complexes. J. Ind. Eng. Chem. 2021, 93, 290–301. [Google Scholar] [CrossRef]
- Abdo, J.; Haneef, M. Nano-enhanced drilling fluids: Pioneering approach to overcome uncompromising drilling problems. J. Energy Res. Technol. 2012, 134, 014501. [Google Scholar] [CrossRef]
- Amanullah, M.; Al-Tahini, A.M. Nano-technology-its significance in smart fluid development for oil and gas field application. In SPE Saudi Arabia Section Technical Symposium; OnePetro: Kuala Lumpur, Malaysia, 2009. [Google Scholar] [CrossRef]
- da Luz, R.C.; Paixão, M.V.; Balaban, R.d.C. Nanosilica-chitosan hybrid materials: Preparation, characterization and application in aqueous drilling fluids. J. Mol. Liq. 2019, 279, 279–288. [Google Scholar] [CrossRef]
- Rana, A.; Khan, I.; Saleh, T.A. Advances in Carbon Nanostructures and Nanocellulose as Additives for Efficient Drilling Fluids: Trends and Future Perspective—A Review. Energy Fuels 2021, 35, 7319–7339. [Google Scholar] [CrossRef]
- Gautam, R.; Sahai, M.; Kumar, S. Recent advances in application of nanomaterials as additives for drilling fluids. Energy Sources Part A. 2020, 1–24. [Google Scholar] [CrossRef]
- Ikram, R.; Mohamed Jan, B.; Vejpravova, J.; Choudhary, M.I.; Zaman Chowdhury, Z. Recent Advances of Graphene-Derived Nanocomposites in Water-Based Drilling Fluids. Nanomaterials 2020, 10, 2004. [Google Scholar] [CrossRef]
- Kasiralvalad, E. The great potential of nanomaterials in drilling & drilling fluid applications. Int. J. Nano Dimens. 2014, 5, 463–471. [Google Scholar]
- Li, L.; Xu, X.; Sun, J.; Yuan, X.; Li, Y. Vital role of nanomaterials in drilling fluid and reservoir protection applications. In Abu Dhabi International Petroleum Conference and Exhibition; OnePetro: Kuala Lumpur, Malaysia, 2012. [Google Scholar] [CrossRef]
- Salih, A.; Elshehabi, T.; Bilgesu, H. Impact of nanomaterials on the rheological and filtration properties of water-based drilling fluids. In SPE Eastern Regional Meeting; OnePetro: Kuala Lumpur, Malaysia, 2016. [Google Scholar] [CrossRef]
- Ghayedi, A.; Khosravi, A. Laboratory investigation of the effect of GO-ZnO nanocomposite on drilling fluid properties and its potential on H2S removal in oil reservoirs. J. Pet. Sci. Eng. 2020, 184, 106684. [Google Scholar] [CrossRef]
- Kamali, F.; Saboori, R.; Sabbaghi, S. Fe3O4-CMC Nanocomposite Performance Evaluation as Rheology Modifier and Fluid Loss Control Characteristic Additives in Water-Based Drilling Fluid. J. Pet. Sci. Eng. 2021, 205, 108912. [Google Scholar] [CrossRef]
- Saboori, R.; Sabbaghi, S.; Kalantariasl, A. Improvement of rheological, filtration and thermal conductivity of bentonite drilling fluid using copper oxide/polyacrylamide nanocomposite. Powder Technol. 2019, 353, 257–266. [Google Scholar] [CrossRef]
- Mohamadian, N.; Ghorbani, H.; Wood, D.A.; Khoshmardan, M.A. A hybrid nanocomposite of poly (styrene-methyl methacrylate-acrylic acid)/clay as a novel rheology-improvement additive for drilling fluids. J. Polym. Res. 2019, 26, 33. [Google Scholar] [CrossRef]
- Lekomtsev, A.; Keykhosravi, A.; Moghaddam, M.B.; Daneshfar, R.; Rezvanjou, O. On the prediction of filtration volume of drilling fluids containing different types of nanoparticles by ELM and PSO-LSSVM based models. Petroleum 2021. [Google Scholar] [CrossRef]
- Rafati, R.; Smith, S.R.; Haddad, A.S.; Novara, R.; Hamidi, H. Effect of nanoparticles on the modifications of drilling fluids properties: A review of recent advances. J. Pet. Sci. Eng. 2018, 161, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Al-Zubaidi, N.S.; Alwasiti, A.A.; Mahmood, D. A comparison of nano bentonite and some nano chemical additives to improve drilling fluid using local clay and commercial bentonites. Egypt. J. Pet. 2017, 26, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Kosynkin, D.V.; Ceriotti, G.; Wilson, K.C.; Lomeda, J.R.; Scorsone, J.T.; Patel, A.D.; Friedheim, J.E.; Tour, J.M. Graphene Oxide as a High-Performance Fluid-Loss-Control Additive in Water-Based Drilling Fluids. ACS Appl. Mater. Interfaces 2012, 4, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Sadeghalvaad, M.; Sabbaghi, S. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder Technol. 2015, 272, 113–119. [Google Scholar] [CrossRef]
- Patel, A.; Stamatakis, S.; Young, S.; Friedheim, J. Advances in inhibitive water-based drilling fluids—can they replace oil-based muds? In International Symposium on Oilfield Chemistry; OnePetro: Kuala Lumpur, Malaysia, 2007. [Google Scholar] [CrossRef]
- Vryzas, Z.; Kelessidis, V.C. Nano-based drilling fluids: A review. Energies 2017, 10, 540. [Google Scholar] [CrossRef]
- Qu, Y.; Lai, X.; Zou, L. Polyoxyalkyleneamine as shale inhibitor in water-based drilling fluids. Appl. Clay Sci. 2009, 3, 265–268. [Google Scholar] [CrossRef]
- Kazemi-Beydokhti, A.; Hajiabadi, S.H. Rheological investigation of smart polymer/carbon nanotube complex on properties of water-based drilling fluids. Colloids Surf. A 2018, 556, 23–29. [Google Scholar] [CrossRef]
- Ismail, A.R.; Rashid, N.M.; Jaafar, M.Z.; Sulaiman, W.R.W.; Buang, N.A. Effect of nanomaterial on the rheology of drilling fluids. J. Appl. Sci. 2014, 14, 1192. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Kang, Y.; You, L. Wellbore instability induced by the coupling of high-pH fluid–shale reaction and fracture surface sliding in shale gas wells: Experimental and field studies. Energy Fuels 2020, 34, 5578–5588. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, G.; Li, X.; Luckham, P.F. Study of graphene oxide to stabilize shale in water-based drilling fluids. Colloids Surf. A 2020, 606, 125457. [Google Scholar] [CrossRef]
- Aramendiz, J.; Imqam, A. Water-based drilling fluid formulation using silica and graphene nanoparticles for unconventional shale applications. J. Pet. Sci. Eng. 2019, 179, 742–749. [Google Scholar] [CrossRef]
- Taraghikhah, S.; Kalhor Mohammadi, M.; Tahmasbi Nowtaraki, K. Multifunctional nanoadditive in water based drilling fluid for improving shale stability. In International Petroleum Technology Conference; OnePetro: Kuala Lumpur, Malaysia, 2015. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Abdalla, Y.; Agi, A.; Oseh, J.O. Experimental investigation of the effects of silica nanoparticle on hole cleaning efficiency of water-based drilling mud. J. Pet. Sci. Eng. 2019, 172, 1226–1234. [Google Scholar] [CrossRef]
- Al-Yasiri, M.; Awad, A.; Pervaiz, S.; Wen, D. Influence of silica nanoparticles on the functionality of water-based drilling fluids. J. Pet. Sci. Eng. 2019, 179, 504–512. [Google Scholar] [CrossRef]
- Medhi, S.; Gupta, D.; Sangwai, J.S. Impact of zinc oxide nanoparticles on the rheological and fluid-loss properties, and the hydraulic performance of non-damaging drilling fluid. J. Nat. Gas Sci. Eng. 2021, 88, 103834. [Google Scholar] [CrossRef]
- Halali, M.A.; Ghotbi, C.; Tahmasbi, K.; Ghazanfari, M.H. The role of carbon nanotubes in improving thermal stability of polymeric fluids: Experimental and modeling. Ind. Eng. Chem. Res. 2016, 55, 7514–7534. [Google Scholar] [CrossRef]
- Barry, M.M.; Jung, Y.; Lee, J.-K.; Phuoc, T.X.; Chyu, M.K. Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids. J. Pet. Sci. Eng. 2015, 127, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Taha, N.M.; Lee, S. Nano graphene application improving drilling fluids performance. In International Petroleum Technology Conference; OnePetro: Kuala Lumpur, Malaysia, 2015. [Google Scholar] [CrossRef]
- Özkan, A. Effect of gold nanoparticle functionalized multi-walled carbon nanotubes on the properties of Na-bentonite water based drilling fluid. Fresenius Environ. Bull. 2020, 29, 143–151. [Google Scholar]
- Mohideen, A.A.M.; Saheed, M.S.M.; Mohamed, N.M. Multiwalled carbon nanotubes and graphene oxide as nano-additives in water-based drilling fluid for enhanced fluid-loss-control & gel strength. In AIP Conference Proceedings; AIP Publishing LLC: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Elochukwu, H.; Sia, L.K.S.; Gholami, R.; Hamid, M.A. Data on experimental investigation of Methyl Ester Sulphonate and nanopolystyrene for rheology improvement and filtration loss control of water-based drilling fluid. Data Brief 2018, 21, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Abdo, J.; AL-Sharji, H.; Hassan, E. Effects of nano-sepiolite on rheological properties and filtration loss of water-based drilling fluids. Surf. Interface Anal. 2016, 48, 522–526. [Google Scholar] [CrossRef]
- Medhi, S.; Chowdhury, S.; Bhatt, N.; Gupta, D.K.; Rana, S.; Sangwai, J.S. Analysis of high performing graphene oxide nanosheets based non-damaging drilling fluids through rheological measurements and CFD studies. Powder Technol. 2021, 377, 379–395. [Google Scholar] [CrossRef]
- Ma, J.; Pang, S.; Zhang, Z.; Xia, B.; An, Y. Experimental Study on the Polymer/Graphene Oxide Composite as a Fluid Loss Agent for Water-Based Drilling Fluids. ACS Omega 2021, 6, 9750–9763. [Google Scholar] [CrossRef]
- Davoodi, S.; SA, A.R.; Soleimanian, A.; Jahromi, A.F. Application of a novel acrylamide copolymer containing highly hydrophobic comonomer as filtration control and rheology modifier additive in water-based drilling mud. J. Pet. Sci. Eng. 2019, 180, 747–755. [Google Scholar] [CrossRef]
- Aftab, A.; Ali, M.; Arif, M.; Panhwar, S.; Saady, N.M.C.; Al-Khdheeawi, E.A.; Mahmoud, O.; Ismail, A.R.; Keshavarz, A.; Iglauer, S. Influence of tailor-made TiO2/API bentonite nanocomposite on drilling mud performance: Towards enhanced drilling operations. Appl. Clay Sci. 2020, 199, 105862. [Google Scholar] [CrossRef]
- Nizamani, A.; Ismail, A.R.; Junin, R.; Dayo, A.; Tunio, A.; Ibupoto, Z.; Sidek, M. Synthesis of titaniabentonite nano composite and its applications in water-based drilling fluids. Chem. Eng. Trans. 2017, 56, 949–954. [Google Scholar]
- Pakdaman, E.; Osfouri, S.; Azin, R.; Niknam, K.; Roohi, A. Improving the rheology, lubricity, and differential sticking properties of water-based drilling muds at high temperatures using hydrophilic Gilsonite nanoparticles. Colloids Surf. A 2019, 582, 123930. [Google Scholar] [CrossRef]
- Abdo, J.; Haneef, M. Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Appl. Clay Sci. 2013, 86, 76–82. [Google Scholar] [CrossRef]
- Ma, J.; Xu, J.; Pang, S.; Zhou, W.; Xia, B.; An, Y. Novel Environmentally Friendly Lubricants for Drilling Fluids Applied in Shale Formation. Energy Fuels 2021, 35, 8153–8162. [Google Scholar] [CrossRef]
- Kusrini, E.; Oktavianto, F.; Usman, A.; Mawarni, D.P.; Alhamid, M.I. Synthesis, characterization, and performance of graphene oxide and phosphorylated graphene oxide as additive in water-based drilling fluids. Appl. Surf. Sci. 2020, 506, 145005. [Google Scholar] [CrossRef]
- Aftab, A.; Ismail, A.R.; Khokhar, S.; Ibupoto, Z.H. Novel zinc oxide nanoparticles deposited acrylamide composite used for enhancing the performance of water-based drilling fluids at elevated temperature conditions. J. Pet. Sci. Eng. 2016, 146, 1142–1157. [Google Scholar] [CrossRef]
- Farahbod, F. Experimental investigation of thermo-physical properties of drilling fluid integrated with nanoparticles: Improvement of drilling operation performance. Powder Technol. 2021, 384, 125–131. [Google Scholar] [CrossRef]
- William, J.K.M.; Gupta, P.; Sangwai, J.S. Interaction of lubricants on the rheological and filtration loss properties of water-based drilling fluids. Pet. Sci. Technol. 2021, 39, 235–248. [Google Scholar] [CrossRef]
- Zheng, Y.; Asif, A.; Amiri, A.; Polycarpou, A.A. Graphene-Based Aqueous Drilling Muds as Efficient, Durable, and Environmentally Friendly Alternatives for Oil-Based Muds. ACS Appl. Nano Mater. 2021, 4, 1243–1251. [Google Scholar] [CrossRef]
- Kania, D.; Yunus, R.; Omar, R.; Rashid, S.A.; Jan, B.M. A review of biolubricants in drilling fluids: Recent research, performance, and applications. J. Pet. Sci. Eng. 2015, 135, 177–184. [Google Scholar] [CrossRef]
- Perumalsamy, J.; Gupta, P.; Sangwai, J.S. Performance evaluation of esters and graphene nanoparticles as an additives on the rheological and lubrication properties of water-based drilling mud. J. Pet. Sci. Eng. 2021, 204, 108680. [Google Scholar] [CrossRef]
- Lescure, J.; Teng, J.; Degouy, D.; Espagne, B.J.-L. Development and field trial of a non-aqueous-based mud lubricant. In SPE Offshore Europe Oil and Gas Conference and Exhibition; OnePetro: Kuala Lumpur, Malaysia, 2013. [Google Scholar] [CrossRef]
- Husin, H.; Elraies, K.A.; Choi, H.J.; Aman, Z. Influence of Graphene Nanoplatelet and Silver Nanoparticle on the Rheological Properties of WaterBased Mud. Appl. Sci. 2018, 8, 1386. [Google Scholar] [CrossRef] [Green Version]
- Owuna, F.; Dabai, M.; Sokoto, M.; Dangoggo, S.; Bagudo, B.; Birnin-Yauri, U.; Hassan, L.; Sada, I.; Abubakar, A.; Jibrin, M. Chemical modification of vegetable oils for the production of biolubricants using trimethylolpropane: A review. Egypt. J. Pet. 2020, 29, 75–82. [Google Scholar] [CrossRef]
- Zainal, N.; Zulkifli, N.; Gulzar, M.; Masjuki, H. A review on the chemistry, production, and technological potential of bio-based lubricants. Renew. Sustain. Energy Rev. 2018, 82, 80–102. [Google Scholar] [CrossRef]
- Syahir, A.; Zulkifli, N.; Masjuki, H.; Kalam, M.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.; Harith, M. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Kumar, H.; Harsha, A. Enhanced Lubrication Ability of Polyalphaolefin and Polypropylene Glycol by COOH-Functionalized Multiwalled Carbon Nanotubes as an Additive. J. Mater. Eng. Perform. 2021, 30, 1075–1089. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y. Synthesis of polyethylene glycol modified carbon dots as a kind of excellent water-based lubricant additives. Fullerenes, Nanotubes Carbon Nanostruct. 2019, 27, 400–409. [Google Scholar] [CrossRef]
- Idress, M.; Hasan, M.L. Investigation of Different Environmental-Friendly Waste Materials as Lost Circulation Additive in Drilling Fluids; Springer: Berlin, Germany, 2020; pp. 233–242. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.-B.; Sun, J.-S.; Huang, Y.; Yan, B.-C.; Dong, X.-D.; Liu, F.; Wang, R. Laponite: A promising nanomaterial to formulate high-performance water-based drilling fluids. Pet. Sci. 2021, 18, 579–590. [Google Scholar] [CrossRef]
- Tang, J.; Chen, S.; Jia, Y.; Ma, Y.; Xie, H.; Quan, X.; Ding, Q. Carbon dots as an additive for improving performance in water-based lubricants for amorphous carbon (aC) coatings. Carbon 2020, 156, 272–281. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, G.; Zhang, Y.; Zhang, S.; Zhang, C.; Gao, C.; Zhang, P. Controllable synthesis of different morphologies of CuO nanostructures for tribological evaluation as water-based lubricant additives. Friction 2021, 9, 963–977. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Z.; Meng, Q.; Zhou, H.; Li, C.; Liu, B. Effect of graphene and graphene oxide addition on lubricating and friction properties of drilling fluids. Nanosci. Nanotechnol. Lett. 2017, 9, 446–452. [Google Scholar] [CrossRef]
- Mohamed, A.; Dahab, A.-S.A.; Shokir, E. Enhancement of Water-Based Mud Rheology and Lubricity Using Silica Nanoparticles. Pet. Coal. 2020, 62, 1427–1434. [Google Scholar]
- Katende, A.; Boyou, N.V.; Ismail, I.; Chung, D.Z.; Sagala, F.; Hussein, N.; Ismail, M.S. Improving the performance of oil based mud and water based mud in a high temperature hole using nanosilica nanoparticles. Colloids Surf. A 2019, 577, 645–673. [Google Scholar] [CrossRef]
- Alwasitti, A.A.; Al-Zubaidi, N.S.; Salam, M. Enhancing lubricity of drilling fluid using nanomaterial additives. Pet. Coal. 2019, 61. [Google Scholar]
- Saffari, H.; Soltani, R.; Alaei, M.; Soleymani, M. Tribological properties of water-based drilling fluids with borate nanoparticles as lubricant additives. J. Pet. Sci. Eng. 2018, 171, 253–259. [Google Scholar] [CrossRef]
- Alvi, M.A.A.; Belayneh, M.; Saasen, A.; Aadnøy, B.S. The effect of micro-sized boron nitride BN and iron trioxide Fe2O3 nanoparticles on the properties of laboratory bentonite drilling fluid. In SPE Norway One Day Seminar; OnePetro: Kuala Lumpur, Malaysia, 2018. [Google Scholar] [CrossRef]
- Akram, A.; Alvi, M.A.A.; Belayneh, M. The Impact of MWCNT on XG Polymer/Salt Treated Laboratory Water Based Drilling Fluid. Int. J. Nano Sci. Nanotechnol. 2018, 9, 1–8. [Google Scholar]
- Ismail, A.; Rashid, M.; Thameem, B. Application of nanomaterials to enhanced the lubricity and rheological properties of water based drilling fluid. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Bég, O.A.; Espinoza, D.S.; Kadir, A.; Shamshuddin, M.; Sohail, A. Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles. Appl. Nanosci. 2018, 8, 1069–1090. [Google Scholar] [CrossRef]
- Parizad, A.; Shahbazi, K.; Tanha, A.A. Enhancement of polymeric water-based drilling fluid properties using nanoparticles. J. Pet. Sci. Eng. 2018, 170, 813–828. [Google Scholar] [CrossRef]
- Vegard, B.; Belayneh, M. The Effect Of Titanium Nitride (TiN) Nanoparticle On The Properties & Performance Bentonite Drilling Fluid. Int. J. Nano Sci. Nanotechnol. 2017, 8, 25–35. [Google Scholar]
- Mijić, P.; Gaurina-Međimurec, N.; Pašić, B. The Influence of SiO2 and TiO2 Nanoparticles on the Properties of Water-Based Mud. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Krishnan, S.; Abyat, Z.; Chok, C. Characterization of boron-based nanomaterial enhanced additive in water-based drilling fluids: A study on lubricity, drag, ROP and fluid loss improvement. In SPE/IADC Middle East Drilling Technology Conference and Exhibition; OnePetro: Kuala Lumpur, Malaysia, 2016. [Google Scholar] [CrossRef]
Types of Wastes Materials | Process Parameters | Range of Particle Size | Amount of Waste Used (g) | Yield Point (lb/100 ft2) | Plastic Viscosity (cP) | Filtrate Loss (% Reduction) | References |
---|---|---|---|---|---|---|---|
Basil Seed Powder (BSP) | 90–150 °C | 5–10 µm | 1 | 5–45 Pa | 5–28 mPa.s | 10.2–67.9% | [63] |
Carboxymethyl cellulose carton waste (CMC) | - | - | 1–5 g | - | - | 0.4–10% | [64] |
Wild Jujube Pit Powder (WJPP) | 6.9 MPa | 54, 75, 100 µm | - | 1.5–2.5 Pa | 3–4 mPa.s | 30–47.5% | [65] |
Banana Peel Powder (BPP) | - | - | 6–18 g | 10–16 | 6–12 | 39–54% | [66] |
Black Sunflower Seeds Shell Powder | 250 °F, 500 psi | 52–400 µm | 3.5–24.5 g | 26–47 | 7–13 | 0.3–25% | [51] |
Brachystegia eurycoma rice husk | - | - | 20 | - | - | 35.62% | [67] |
Detarium microcarpum rice husk | - | - | 15 | - | - | 44.44% | [67] |
Fibrous Food Waste Material (FFWM) | 100 psi | 2% | - | 13 | 8 | 7.0 cc/30 min | [15] |
Green Olive Pits’ Powder (GOPP) | - | 1.5% | 9 | 26 | 7 | 11.5 cc/30 min | [68] |
Henna leaf extract | 78 °F, 300 °F, 100 psi | - | 10–40 | 33–52 | 23–45 | 29.9- 32% | [17] |
Hibiscus leaf extract | 78 °F, 300 °F, 100 psi | - | 10–40 | 73–148 | 41–75 | 31.0- 35.1% | [17] |
Palm Tree Leaves Powder (PTLP) | 55 °C | 3% | 22 | 5 | 9 | 8.9 cc/30 min | [69] |
Potato Peels Powder (PPP) | 73 °F | 4% | 6 | 6 | 10 | 8.75 cc/30 min | [70] |
Saffron Purple Petals (SPP) | 100 psi | - | 50 g | 6.04–10.67 Pa | 0.016–0.039 Pa.s | 23–45% | [56] |
Durian rind | - | 44–2000 µm | 5–10 ppb | 2–75 | 10–80 | 17–60% | [71] |
Mandarin peels powder (MPP) | - | 1–4% | - | 14–57 | 14–63 | 44.0–68.0% | [49] |
Date Seed Powder | 100 psi | 300 µm | 0.25–2 ppb | 4 | 9 | 8–20% | [72] |
Pistachio Shell Powder (PSP) | 104.44 °C, 3.45 MPa | 75–150 µm | 5–9 g | 12.2–13.5 | 19.8–24 | 15.3–44% | [73] |
Soybean Peel Powder (SB) | 100 psi | - | 5 ppb | 23 | 4 | 60% | [74] |
Grass | - | 35–300 µm | 0.25 -1 ppb | 3.5–5 | 8–9 | 11.0–14.6% | [75] |
Corn Starch | 170–200 °F | <125 µm | 6 | - | 2.67–5 | 31% | [76] |
Rice husk | - | 125µm | 5–20 | 9.56 Pa | 0.008 Pa.s | 16.0–42.5% | [77] |
Agarwood | - | 45µm, 90µm | - | 22 | 11.9 | 14.0 | [78] |
Sawdust | 70 °C | 1 mm | - | - | - | 8.6% | [79] |
Walnut shells | - | 2–6 mm | 20–60 | 110–180 | 55–80 | 11.0–14.5% | [80] |
Types of Nanomaterials | Modified Rheological Properties | Experimental Parameters | Conclusions | References |
---|---|---|---|---|
Carbon nano-tubes (CNT) |
| LPLT and HPHT
| Addition of 0.8% CNT in WBDF reduced significant filtration loss in HTHP conditions. | [127] |
Ferric oxide (Fe2O3) |
| LPLT and HPHT | Addition of Fe2O3 in nanoparticles increased fluid loss at LTLP. | [128] |
Graphene |
| LPHT
| Results showed 30% API filtration loss when 1–5 wt% of graphene were added to nanoparticles in 10 ppg WBDF. | [129] |
|
| LPLT | Au nanoparticles-MWCNT at 0.005% w/v exhibit reduction in filtration loss by 6%. | [130] |
|
| LPLT
| MWCNT and graphene oxide at ratio 1:1 of 0.2g each, reduces fluid loss and mud cake thickness. | [131] |
Polystyrene |
| LPLT and HPHT
| Reduction of 50.7% and 61.1% of filtration loss for LPLT and HPHT conditions, respectively. Low permeable and thinner mud cake thickness is also observed through addition of nano-polystyrene. | [132] |
|
| 250°F | Nanocomposite achieved a reduced API filtration loss by 22% in WBDF and showed excellent thermal stability at high temperature, 250°F. | [109] |
Sepiolite |
| HPHT
| 4.0 wt% of nano-sepiolite with 30–90 nm diameter showed reduced filtration loss under HPHT conditions. | [133] |
GO |
| HPHT | Graphene oxide nanosheets using >0.5 wt% improved stability by plugging and sealing of micropores. Reduction in filtration loss by up to 50% by adding 0.8 wt% of graphene oxide was observed. | [134] |
Polymer-graphene oxide |
| 240 °C | Highly efficient filtration loss properties as compared to bentonite-based mud. | [135] |
SiO2 |
| LPLT and HPHT
| 0.7 wt% of SiO2 reduces filtration losses when concentration of SiO2 is increased. In addition, the lowest mud cake thickness (1 mm) was also obtained. | [105] |
Synthetic based Acrylamide–styrene Copolymer(SBASC) |
| 250 °F | SBASC achieved reduction in API and HTHP filtration loss by 47.5% and 38.8%, respectively. | [136] |
T80ZnO |
| API/HTHP
| 0.7g of T80ZnO mitigated API filtration loss and HTHP filtration loss by 17% and 30%, respectively. | [137] |
TiO2- Bentonite |
| API/HTHP | API and HTHP filtration loss reduced by 10% and 9.2%, respectively. | [138] |
Type of Nanomaterials | Range of Particle Size | Amount of Material Used (wt%) | Coefficient of Friction (CoF) | CoF Reduction (%) | References |
---|---|---|---|---|---|
Graphene nanoparticles | - | 1–3 vol% | 0.157–0.255 | - | [148] |
Laponite | 20 nm | 0–2 | - | 11.3–32.3 | [157] |
Carbon dots | 1–4 nm | 0.05–1.5 | 0.03–0.055 | 33 | [158] |
CuO nanostructures | 6–60 nm | 0.8 | 0.168–0.199 | 65.4–70.9 | [159] |
Graphene oxide | 50 nm | - 0.075 | 0.119 19.8 | - 24.3 | [142] [160] |
SiO2 nanoparticles | 10–20 nm | 0.013–0.53 | 0.24–0.38 | 13–25 | [161] |
TiO2/API bentonite nanocomposite (TNBT) | 29 nm | 0–1.0 g | 0.16–0.23 | 33–35 | [137] |
Gilsonite nanoparticles | 300 nm | 10 g | 0.15 | 15 | [139] |
Polypropylene- SiO2 nanocomposite | 80–390 nm | 0.23–0.28 | 20.7 | [124] | |
SiO2 nanoparticles | - | 0.5–1.5 ppb | 0.267–0.41 | 3.2–12.61 | [162] |
Xantham gum (XC polymer), barite and lignite | 10–400, 112, 63 nm | 0.2–4 g | 0.178–0.357 | 2.72–51.49 | [163] |
Borate nanoparticles | 35–40 nm | 0.01 g | 0.06–0.12 | 69–86.5 | [164] |
Boron Nitride (BN) nanoparticles | 250 nm | 0.05–0.20 g | 0.27–0.33 | 24–37 | [165] |
Iron oxide (Fe2O3) nanoparticles | - | 0.05–0.20 g | 0.147–0.170 | 43–51 | [165] |
MWCNT | 20–40 nm | 0.0095–0.38 | 0.15–0.30 | 30–50 | [166] |
MWCNT | - | 0.01–0.04 | 0.07–0.15 | 62 | [167] |
SiO2 nanoparticles | - | 0.2–0.6 | 0.35–0.38 | - | [168] |
Titanium oxide (TiO2) nanoparticles | - | 0.2–0.6 | 0.31–0.34 | - | [168] |
Titanium oxide (TiO2) nanoparticles | - | 0–2.625 lb/bbl | 0.34–0.38 | - | [169] |
Titanium Nitride (TiN) | 20 nm | 0.0095 | 0.311, 0.546 | 46 | [170] |
Titanium oxide (TiO2) nanoparticles | - | 0.5–1.0 | 0.36–0.40 | 14.3 | [171] |
Boron-based nanomaterial enhanced additive (PQCB) | - | 1–5 | - | 30–80 | [172] |
Zinc oxide nanoparticles deposited acrylamide composite | - | 0.1–1.0 g | 0.21–0.28 | 25 | [143] |
Nanographene | 1–5 | 0.07–0.16 | 34.6–54.6 | [129] | |
SiO2 nanoparticles | 1–60 nm | 0.5–2.0 | 0.105–0.287 | 22.5–71.6 | [123] |
Palygorskite nanoparticles | 10 nm–15 µm | 0–8 g | 0.23–0.34 | 68 | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikram, R.; Mohamed Jan, B.; Sidek, A.; Kenanakis, G. Utilization of Eco-Friendly Waste Generated Nanomaterials in Water-Based Drilling Fluids; State of the Art Review. Materials 2021, 14, 4171. https://doi.org/10.3390/ma14154171
Ikram R, Mohamed Jan B, Sidek A, Kenanakis G. Utilization of Eco-Friendly Waste Generated Nanomaterials in Water-Based Drilling Fluids; State of the Art Review. Materials. 2021; 14(15):4171. https://doi.org/10.3390/ma14154171
Chicago/Turabian StyleIkram, Rabia, Badrul Mohamed Jan, Akhmal Sidek, and George Kenanakis. 2021. "Utilization of Eco-Friendly Waste Generated Nanomaterials in Water-Based Drilling Fluids; State of the Art Review" Materials 14, no. 15: 4171. https://doi.org/10.3390/ma14154171
APA StyleIkram, R., Mohamed Jan, B., Sidek, A., & Kenanakis, G. (2021). Utilization of Eco-Friendly Waste Generated Nanomaterials in Water-Based Drilling Fluids; State of the Art Review. Materials, 14(15), 4171. https://doi.org/10.3390/ma14154171