Design Development and Analysis of a Partially Superconducting Axial Flux Motor Using YBCO Bulks
Abstract
:1. Introduction
2. Superconducting Inductor Design
2.1. Superconducting Inductor vs. Conventional Inductor
2.2. Operating Point of the Superconducting Inductor
2.3. The Superconducting Inductor Design
Superconducting Inductor vs. Superconducting Coil
2.4. Prototype Optimization
2.4.1. Shape Optimization
2.4.2. Superconducting Wire Optimization
2.5. Superconducting Machine
2.6. Induced Voltage
3. Realization and Test
3.1. Inductor Realized and Test
3.2. Realization of the Armature Winding
3.3. Induced Electromotive Force Created by Prototype
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luk, P.C. Superconducting machines—The enabling technology for future electric propulsion in aircraft. In Proceedings of the 2017 7th International Conference on Power Electronics Systems and Applications-Smart Mobility, Power Transfer & Security (PESA), Hong Kong, China, 12–14 December 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Hirakawa, M.; Inadama, S.; Kikukawa, K.; Suzuki, E.; Nakasima, H. Developments of superconducting motor with YBCO bulk magnets. Phys. C Supercond. 2003, 392–396, 773–776. [Google Scholar] [CrossRef]
- Zhu, G.; Li, L.; Liu, X.; Chen, H.; Jiang, W.; Xue, M.; Li, M. Design Optimization of a HTS-Modulated PM Wind Generator. IEEE Trans. Appl. Supercond. 2021. [CrossRef]
- Bray, J.W. High-temperature superconducting motors and generators for power grid applications. In Superconductors in the Power Grid; Woodhead Publishing: Shaxton, UK, 2015; pp. 325–344. [Google Scholar] [CrossRef]
- Gubser, D.U. Superconducting motors and generators for naval applications. Phys. C Supercond. 2003, 392–396, 1192–1195. [Google Scholar] [CrossRef]
- Badea, G.; Felseghi, R.-A.; Aschilean, I.; Bolboaca, A.M.; Muresan, D.; Soimosan, T.; Stefanescu, I.; Raboaca, S. Energen system for power supply of passive house: Case study. In Proceedings of the Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), Sliema, Malta, 17 August 2015; pp. 24–31. [Google Scholar] [CrossRef]
- Balachandran, T.; Yoon, A.; Lee, D.; Xiao, J.; Haran, K.S. Ultra-High-Field, High-Efficiency Superconducting Machines for Offshore Wind Turbines. IEEE Trans. Magn. 2021. [CrossRef]
- Rata, M.; Rata, G.; Filote, C.; Raboaca, M.S.; Graur, A.; Afanasov, C.; Felseghi, A.-R. The ElectricalVehicle Simulator for Charging Station in Mode 3 of IEC 61851-1 Standard. Energies 2020, 13, 176. [Google Scholar] [CrossRef] [Green Version]
- Kelouaz, M.; Ouazir, Y.; Hadjout, L.; Mezani, S.; Lubin, T.; Berger, K.; Lévêque, J. 3D Magnetic field modeling of a new superconducting synchronous machine using reluctance network method. Phys. C Supercond. 2018, 548, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, K.; Nekrasova, J.; Ivanov, N.; Zhurzvlev, S. Design of all-superconducting electrical motor for full electric aircraft. In Proceedings of the 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russia, 21–25 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Yazdani-Asrami, M.; Song, W.; Zhang, M.; Yuan, W.; Pei, X. Magnetization Loss in HTS Coated Conductor Exposed to Harmonic External Magnetic Fields for Superconducting Rotating Machine Applications. IEEE Access 2021, 9, 77930–77937. [Google Scholar] [CrossRef]
- Haran, K.S.; Kalsi, S.; Arndt, T.; Karmaker, H.; Badcock, R.; Buckley, B.; Stautner, E.W. High power density superconducting rotating machines—Development status and technology roadmap. Supercond. Sci. Technol. 2017, 30, 123002. [Google Scholar] [CrossRef]
- Masson, P.; Netter, D.; Levêque, J.; Rezzoug, A. Magnetic field concentration: Comparison between several shapes of superconducting shields. IEEE Trans. Appl. Supercond. 2001, 11, 2248–2251. [Google Scholar] [CrossRef]
- Masson, P.; Levêque, J.; Netter, D.; Rezzoug, A. Experimental study of a new kind of superconducting inductor. IEEE Trans. Appl. Supercond. 2003, 13, 2239–2242. [Google Scholar] [CrossRef]
- Ailam, E.H.; Netter, D.; Leveque, J.; Douine, B.; Masson, P.J.; Rezzoug, A. Design and Testing of a Superconducting Rotating Machine. IEEE Trans. Appl. Supercond. 2007, 17, 27–33. [Google Scholar] [CrossRef]
- Moulin, R.; Levêque, J.; Mercier, J.; Rezzoug, A.; Netter, D. Superconducting multi-stacks motors using the diamagnetism property of bulk material. In Proceedings of the 2008 18th International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Moulin, R.; Leveque, J.; Durantay, L.; Douine, B.; Netter, D.; Rezzoug, A. Superconducting Multistack Inductor for Synchronous Motors Using the Diamagnetism Property of Bulk Material. IEEE Trans. Ind. Electron. 2009, 57, 146–153. [Google Scholar] [CrossRef]
- Alhasan, R.; Lubin, T.; Lévêque, J. Study and test of a new superconducting inductor structure for a synchronous machine. In Proceedings of the 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, 3–6 November 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Alhasan, R.; Lubin, T.; Douine, B.; Adilov, Z.M.; Leveque, J. Test of an Original Superconducting Synchronous Machine Based on Magnetic Shielding. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Masson, P.J.; Breschi, M.; Tixador, P.; Luongo, C.A. Design of HTS Axial Flux Motor for Aircraft Propulsion. IEEE Trans. Appl. Supercond. 2007, 17, 1533–1536. [Google Scholar] [CrossRef]
- Arish, N.; Marignetti, F.; Yazdani-Asrami, M. Comparative study of a new structure of HTS-bulk axial flux-switching machine. Phys. C Supercond. 2021, 584, 1353854. [Google Scholar] [CrossRef]
- Douine, B.; Berger, K.; Ivanov, N. Characterization of High-Temperature Superconductor Bulks for Electrical Machine Application. Materials 2021, 14, 1636. [Google Scholar] [CrossRef] [PubMed]
- Namburi, D.K.; Singh, K.; Huang, K.Y.; Neelakantan, S.; Durrell, J.H.; Cardwell, D.A. Improved mechanical properties through recycling of Y-Ba-Cu-O bulk superconductors. J. Eur. Ceram. Soc. 2021, 41, 3480–3492. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, Z.; Grilli, F.; Gyftakis, K.; Mueller, M. Alternating Current Loss of Superconductors Applied to Superconducting Electrical Machines. Energies 2021, 14, 2234. [Google Scholar] [CrossRef]
- Muralidhar, M.; Jirsa, M.; Murakami, M. Enhanced flux pinning of single grain bulk (Gd, Dy)BCO superconductors processed by cold-top-seeded infiltration growth method. Mater. Sci. Eng. B 2020, 253, 114494. [Google Scholar] [CrossRef]
- Sumption, M.; Murphy, J.; Susner, M.; Haugan, T. Performance metrics of electrical conductors for aerospace cryogenic motors, generators, and transmission cables. Cryog. 2020, 111, 103171. [Google Scholar] [CrossRef]
- Polichetti, M.; Galluzzi, A.; Buchkov, K.; Tomov, V.; Nazarova, E.; Leo, A.; Grimaldi, G.; Pace, S. A precursor mechanism triggering the second magnetization peak phenomenon in superconducting materials. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Sizochenko, N.; Hofmann, M. Predictive Modeling of Critical Temperatures in Superconducting Materials. Molecules 2021, 26, 8. [Google Scholar] [CrossRef]
- Li, Q.; Deng, Z.; Wang, L.; Li, H.; Zhang, J.; Rodriguez, E.F. Active vibration control of secondary suspension based on high-temperature superconducting maglev vehicle system. Phys. C Supercond. 2021, 585, 1353872. [Google Scholar] [CrossRef]
- Kutt, F.; Blecharz, K.; Karkosiński, D. Axial-Flux Permanent-Magnet Dual-Rotor Generator for a Counter-Rotating Wind Turbine. Energies 2020, 13, 2833. [Google Scholar] [CrossRef]
- Calamiotou, M.; Lampakis, D.; Zhigadlo, N.; Katrych, S.; Karpinskic, J.; Fitch, A.; Tsiaklagkanos, P.; Liarokapis, E. Local lattice distortions vs. structural phase transition in NdFeAsO 1 − x F x. Phys. C Supercond. 2016, 527, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Padmanathan, K.; Kamalakannan, N.; Sanjeevikumar, P.; Blaabjerg, F.; Holm-Nielsen, J.B.; Uma, G.; Arul, R.; Rajesh, R.; Srinivasan, A.; Baskaran, J. Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems. Energies 2019, 12, 2616. [Google Scholar] [CrossRef] [Green Version]
- Gieras, J.F. Advancements in Electric Machines; Springer Science & Business Media: Berlin, Germany, 2008; Available online: https://www.springer.com/gp/book/9781402090066 (accessed on 10 March 2021).
- Wang, X.; Zhao, M.; Zhou, Y.; Xu, W.; Wan, Z. Design and Analysis for Multi-Disc Coreless Axial-Flux Permanent-Magnet Synchronous Machine. IEEE Trans. Appl. Supercond. 2021. [CrossRef]
- Ailam, E.H.; Hachama, M.; Benallal, M.N.; Mehabil, Y.; Leveque, J.; Rezzoug, A. Study of an Axial Superconducting Motor Using the Monte Carlo Method. IEEE Trans. Appl. Supercond. 2013, 23, 5201404. [Google Scholar] [CrossRef]
- Elbaa, M.; Bentridi, S.E.; Douine, B.; Berger, K.; Lévêque, J. Résolution de l’équation de Laplace par la méthode de Monte Carlo: Application à une bobine supraconductrice. In Proceedings of the CISTEM 2016-Conférence Internationale en Sciences et Technologies Electriques au Maghreb, Marrakech, Maroc, 26–28 October 2016; pp. 1–4. Available online: https://hal.archives-ouvertes.fr/hal-01501819/ (accessed on 12 March 2021).
- Messina, G.; Yazdani-Asrami, M.; Marignetti, F.; della Corte, A. Characterization of HTS Coils for Superconducting Rotating Electric Machine Applications: Challenges, Material Selection, Winding Process, and Testing. IEEE Trans. Appl. Supercond. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Biasion, M.; Fernandes, J.F.P.; Vaschetto, S.; Cavagnino, A.; Tenconi, A. Superconductivity and its Application in the Field of Electrical Machines. In Proceedings of the 2021 IEEE International Electric Machines & Drives Conference (IEMDC), Hartford, CT, USA, 17–20 May 2021; pp. 1–7. [Google Scholar] [CrossRef]
- MacManus-Driscoll, J.L.; Wimbush, S.C. Processing and application of high-temperature superconducting coated conductors. Nat. Rev. Mater. 2021, 6, 1–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Y.; Fan, X.; Li, D.; Qu, R. Electromagnetic Fault Analysis of Superconducting Wind Generator with Different Topologies. IEEE Trans. Appl. Supercond. 2021, 31, 1–6. [Google Scholar] [CrossRef]
- Yazdani-Asrami, M.; Zhang, M.; Yuan, W. Challenges for developing high temperature superconducting ring magnets for rotating electric machine applications in future electric aircrafts. J. Magn. Magn. Mater. 2021, 522, 167543. [Google Scholar] [CrossRef]
- Wheeler, P.; Sirimanna, T.S.; Bozhko, S.; Haran, K.S. Electric/Hybrid-Electric Aircraft Propulsion Systems. Proc. IEEE 2021, 109, 1115–1127. [Google Scholar] [CrossRef]
- Dorget, R.; Nouailhetas, Q.; Colle, A.; Berger, K.; Sudo, K.; Ayat, S.; Lévêque, J.; Koblischka, M.; Sakai, N.; Oka, T.; et al. Review on the Use of Superconducting Bulks for Magnetic Screening in Electrical Machines for Aircraft Applications. Materials 2021, 14, 2847. [Google Scholar] [CrossRef] [PubMed]
- Gieras, J.F.; Wang, R.J.; Kamper, M.J. Axial Flux Permanent Magnet Brushless Machines; Springer Science & Business Media: Berlin, Germany, 2008; Available online: https://link.springer.com/book/10.1007/978-1-4020-8227-6 (accessed on 18 March 2021).
- Messina, G.; De Bella, E.T.; Morici, L. HTS Axial Flux Permanent Magnets Electrical Machine Prototype: Design and Test Results. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Mardiha, M.; Vakilian, M. Design and electromagnetic analysis of a superconducting rotating machine. In Proceedings of the 2008 Australasian Universities Power Engineering Conference, Sydney, NSW, Australia, 14–17 December 2008; pp. 1–3. Available online: https://ieeexplore.ieee.org/abstract/document/4813097 (accessed on 18 March 2021).
Characteristics | Symbol | Dimensions |
---|---|---|
External radius | Rex | 85 mm |
Internal radius | Rin | 63 mm |
Length | L | 15 mm |
Current density | j | 670 A/mm2 |
Intensity current | i | 101 A |
Length of wire | L0 | 787 m |
Number of turns | N | 1700 |
Superconducting Wire | |
Type | NbTi |
Number of filaments | 56 |
Diameter With/without insulation | 0.44 mm/0.40 mm |
section | 0.1519 mm2 |
form | round |
Superconducting Bulks | |
Type | YBCO monocristal |
Number | 2 |
mass | 158 g |
Shape | disc |
Radius | 22.5 mm |
thickness | 15 mm |
Characteristics | Symbol | Dimensions |
---|---|---|
Radius externe | Rex | 62 mm |
Radius interne | Rin | 36 mm |
Length | L | 25 mm |
number of slots | Ns | 18 |
Number of coils | Nc | 18 |
Type of winding | - | winding on the tooth |
Characteristics | Dimensions |
---|---|
Radius externe | 150 mm |
Radius interne | 63 mm |
Thickness | 15 mm |
Number of layers | 86 mm |
Number of turns | 1152 |
Material of manufacture | copper |
Diameter/Wire section | 1 mm/0.785 mm2 |
mass | 5.5 kg |
Characteristics | Dimensions |
---|---|
Number of phases | 3 |
Number of coil | 6 |
Number of turns per coil | 95 |
wire section | 0.785 mm2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douma, B.C.; Abderezzak, B.; Ailam, E.; Felseghi, R.-A.; Filote, C.; Dumitrescu, C.; Raboaca, M.S. Design Development and Analysis of a Partially Superconducting Axial Flux Motor Using YBCO Bulks. Materials 2021, 14, 4295. https://doi.org/10.3390/ma14154295
Douma BC, Abderezzak B, Ailam E, Felseghi R-A, Filote C, Dumitrescu C, Raboaca MS. Design Development and Analysis of a Partially Superconducting Axial Flux Motor Using YBCO Bulks. Materials. 2021; 14(15):4295. https://doi.org/10.3390/ma14154295
Chicago/Turabian StyleDouma, Brahim Chelarem, Bilal Abderezzak, Elhadj Ailam, Raluca-Andreea Felseghi, Constantin Filote, Catalin Dumitrescu, and Maria Simona Raboaca. 2021. "Design Development and Analysis of a Partially Superconducting Axial Flux Motor Using YBCO Bulks" Materials 14, no. 15: 4295. https://doi.org/10.3390/ma14154295
APA StyleDouma, B. C., Abderezzak, B., Ailam, E., Felseghi, R. -A., Filote, C., Dumitrescu, C., & Raboaca, M. S. (2021). Design Development and Analysis of a Partially Superconducting Axial Flux Motor Using YBCO Bulks. Materials, 14(15), 4295. https://doi.org/10.3390/ma14154295