Assessment of Padding Elements Wear of Belt Conveyors Working in Combination of Rubber–Quartz–Metal Condition
Abstract
:1. Introduction
- Gas,
- Electric arc.
2. Test Stand and Test Conditions
3. Samples
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maciaszek, R. Porównawcza Analiza Procesów Zużywania Elementów Roboczych Maszyn do Uprawy Gleby Pracujących w Gruncie. Master Thesis, Poznan University of Technology, Poznan, Poland, 2016. [Google Scholar]
- Antoniak, J. Przenośniki Taśmowe w Górnictwie Podziemnym i Odkrywkowym; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2016. [Google Scholar]
- Nachman, M. Budowa Chemiczna, Struktura Fizyczna i Zużycie Ścierne Multiblokowych Elastomerów Uretanowych; Zachodniopomorski Uniwersytet Technologiczny w Szczecinie: Szczecin, Poland, 2018. [Google Scholar]
- Romek, D.; Selech, J.; Keska, W. Laboratory tests of the use of belt conveyor elements for moulding sands. Tribologia 2018, 5, 95–100. [Google Scholar] [CrossRef]
- Antoniak, J. Transport Kopalniany Przenośniki; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 1972. [Google Scholar]
- Leszek, W. Rozważania o podstawach tribologii, cz. 7. Ewolucja wiedzy tribologicznej. Tribologia 2007, 3−4, 213–214. [Google Scholar]
- Vakisa, A.I.; Yastrebovb, V.A.; Scheibertc, J.; Nicolade, L.; Dinif, D.; Minfrayc, C.; Almqvistg, A.; Paggih, M.; Leei, S.; Limbertjk, G.; et al. Modeling and simulation in tribology across scales: An overview. Tribol. Int. 2018, 125, 69–199. [Google Scholar] [CrossRef]
- Yang, R.; Ma, W.; Wang, C.; Wang, T.; Wang, Q. Effect of hot rolling on microstructure and tribology behaviors of Ti−50.8Ni alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 967–979. [Google Scholar] [CrossRef]
- Popova, V.L.; Psakhie, S.G. Numerical simulation methods in tribology. Tribol. Int. 2007, 40, 916–923. [Google Scholar] [CrossRef] [Green Version]
- Abd El Aal, M.I. The influence of ECAP and HPT processing on the microstructure evolution, mechanical properties and tribology characteristics of an Al6061 alloy. J. Mater. Res. Technol. 2020, 9, 12525–12546. [Google Scholar] [CrossRef]
- Romek, D.; Selech, J.; Maciaszek, R. A comparison of wear of plough chisels made of different materials and afterpad welding. Bimon. Tribol. 2018, 282, 131–136. [Google Scholar] [CrossRef]
- Konstencki, P.; Stawicki, T.; Królicka, A.; Sędłak, P. Wear of cultivator coulters reinforced with cemented-carbideplates and hardfacing. Wear 2019, 438–439, 203063. [Google Scholar] [CrossRef]
- Mosleh, M.; Gharahbagh, E.A.; Rostami, J. Effects of relative hardness and moisture on tool wear in soil excavation operations. Wear 2013, 302, 1555–1559. [Google Scholar] [CrossRef]
- Napiórkowski, J.; Kołakowski, K.; Pergoł, A. Ocena zużycia nowoczesnych materiałów konstrukcyjnych stosowanych na narzędzia obrabiające glebe. Inżynieria Rol. 2011, 5, 191–197. [Google Scholar]
- Hamblin, M.G.; Stachowiak, G.W. Description of abrasive particle shape and its relation to two-body abrasive wear. Tribol. Trans. 1996, 39, 803–810. [Google Scholar] [CrossRef]
- Kostencki, P.; Stawicki, T.; Królicka, A. The Evaluation of the Effectiveness of Reinforcement by Cemented-Carbide Plates in Two Design Variants of the Chisels Intended for Cultivation-Sowing Aggregates. Materials 2021, 14, 1020. [Google Scholar] [CrossRef] [PubMed]
- Romek, D.; Selech, J.; Ulbrich, D.; Felusiak, A.; Kieruj, P.; Janeba-Bartosiewicz, E.; Pieniak, D. The impact of padding weld shape of agricultural machinery tools on their abrasive wear. Tribologia 2020, 290, 55–62. [Google Scholar] [CrossRef]
- Klimpel, A. Napawanie i Natryskiwanie Cieplne; Wydawnictwo Naukowo-Techniczne: Warszawa, Poland, 2000. [Google Scholar]
- Paczkowska, M.; Selech, J.; Piasecki, A. Effect of surface treatment on abrasive wear resistance of seeder coulerflap. Surf. Rev. Lett. 2016, 23, 3. [Google Scholar] [CrossRef]
- Hejewski, T. Nowoczesne Powłoki Nakładane Cieplnie Odporne na Zużycie Ścierne i Erozyjne; Politechnika Lubelska: Lublin, Poland, 2013. [Google Scholar]
- Olea-Meija, O.; Brostow, W.; Buchman, E. Wear Resistance and Wear Mechanisms in Polymer+Metal Composites. J. Nanosci. Nanotechnol. 2010, 10, 8254–8259. [Google Scholar] [CrossRef]
- Siwak, P.; Garbiec, D.; Rogalewicz, M. The Effect of Cr3C2 and TaC Additives on Microstructure, Hardness and Fracture Toughness of WC-6Co Tool Material Fabricated by Spark Plasma Sintering. Mater. Res. 2017, 20, 780–785. [Google Scholar] [CrossRef] [Green Version]
- Kujawińska, A.; Rogalewicz, M.; Diering, M.; Hamrol, A.; Żywicki, K.; Hoffmann, P.; Konstańczak, M. Improvement of surface layer grinding process with the use of design of experiments methodology. In Proceedings of the 24th International Conference on Production Research, DEStech Transactions on Engineering and Technology Research, Poznan, Poland, 30 July–3 August 2017; pp. 519–524. [Google Scholar]
- Domagała, I.; Przystupa, K.; Firlej, M.; Pieniak, D.; Gil, L.; Borucka, A.; Naworol, I.; Biedziak, B.; Levkiv, M. Analysis of the Statistical Comparability of the Hardness and Wear of Polymeric Materials for Orthodontic Applications. Materials 2021, 14, 2925. [Google Scholar] [CrossRef]
- Tomków, J.; Czupryński, A.; Fydrych, D. The Abrasive Wear Resistance of Coatings Manufactured on High-Strength Low-Alloy (HSLA) Offshore Steel in Wet Welding Conditions. Coatings 2020, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Pieniak, D.; Walczak, A.; Walczak, M.; Przystupa, K.; Niewczas, A.M. Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures. Materials 2020, 13, 1255. [Google Scholar] [CrossRef] [Green Version]
- Kovaříková, I.; Szewczyková, B.; Blaškovitš, P.; Hodúlová, E.; Lechovič, E. Study and Characteristic of Abrasive Wear Mechanisms; Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology: Bratislava, Slovak, 2009; pp. 1–9. [Google Scholar]
- Pooley, C.M.; Tabor, D. Friction and Molecular Structure: The Behaviour of some Thermoplastics. Proc. Roy. Soc. Lond. Ser. A 1972, 329, 251–274. [Google Scholar]
- Berdychowski, M. Badania Laboratoryjne Procesów Zużywania Elementów Przenośników Taśmowych do Mas formierskich. Master Thesis, Poznan University of Technology, Poznan, Poland, 2010. [Google Scholar]
- Hardygóra, M. Taśmy Przenośnikowe; WNT: Warszawa, Poland, 1999. [Google Scholar]
- Available online: https://www.enitra.pl/metody-polaczen-tasm-transportujacych/ (accessed on 15 May 2021).
- Krawiec, P.; Warguła, Ł.; Czarnecka-Komorowska, D.; Janik, P.; Dziechciarz, A.; Kaczmarzyk, P. Chemical compounds released by combustion of polymer composites flat belts. Sci. Rep. 2021, 11, 8269-1–8269-10. [Google Scholar] [CrossRef]
- Gierz, Ł.; Warguła, Ł.; Kukla, M.; Koszela, K.; Zwiachel, T. Computer Aided Modeling of Wood Chips Transport by Means of a Belt Conveyor with Use of Discrete Element Method. Appl. Sci. 2020, 10, 9091. [Google Scholar] [CrossRef]
- Martins, J.I. Corrosion problems in tinplate cans for storing contact glues for shoes. Eng. Fail. Anal. 2012, 26, 258–265. [Google Scholar] [CrossRef]
- Akovali, G. 3-Plastic materials: Chlorinated polyethylene (CPE), chlorinated polyvinylchloride (CPVC), chlorosulfonated polyethylene (CSPE) and polychloroprene rubber (CR). Toxic. Build. Mater. 2012, Woodhead Publishing Series in Civil and Structural Engineering. 54–75. Available online: https://www.sciencedirect.com/book/9780857091222/toxicity-of-building-materials#book-description (accessed on 15 April 2021).
- Molnar, W.; Varga, M.; Braun, P.; Adam, K.; Badish, E. Correlation of rubber based conveyor belt properties and abrasive wear rates under 2- and 3-body conditions. Wear 2014, 320, 1–6. [Google Scholar] [CrossRef]
- Sand Safety Data Sheet. Sandmix. Available online: https://www.sandmix.pl (accessed on 15 April 2021).
- Available online: http://ps-logistyka.pl/uploads/images/Skład%20chemiczny%20i%20właności%20wytrzymałościowe%20stali.pdfs (accessed on 15 May 2021).
- Available online: https://www.lincolnelectric.com/pl-pl/Consumables/Pages/product.aspx?product=Products_ConsumableEU_StickElectrodes-Wearshield-WearshieldMM(LincolnElectric_EU_Base) (accessed on 15 May 2021).
- Kostencki, P.; Stawicki, T.; Królicka, A. Wear of the working parts of agricultural tools in the context of the mass of chemical elements introduced into soil during its cultivation. Int. Soil Water Conserv. Res. 2021, 9, 229–240. [Google Scholar] [CrossRef]
- Available online: http://www.tribologia.eu/ptt/try/tr08.htm (accessed on 12 April 2021).
- Bulut, B.; Gunduz, O.; Baydogan, M.; Kayali, E.S. Determination of matrix composition for diamond cutting tools according to the hardness and abrasivity properties of rocks to be cut. Int. J. Refract. Met. Hard Mater. 2021, 95, 105466. [Google Scholar] [CrossRef]
- Napiórkowski, J.; Lemecha, M.; Szczyglak, P. Analiza zużywania warstw wierzchnich w naturalnych warunkach glebowych. Tribologia 2015, 4, 97–107. [Google Scholar]
- Fiset, M.; Dussault, D. Laboratory simulation of the wear process of belt conveyor rollers. Wear 1993, 162–164, 1012–1015. [Google Scholar] [CrossRef]
Parameters | Value % |
---|---|
SiO2 | >96 |
Al2O3 | <2.0 |
Fe2O3 | <1.0 |
TiO2 | <0.1 |
Mesh Size (mm) | Residue on the Sieve | |
---|---|---|
Scope | (%) | |
2 | Max. 10 | 8 |
1.6 | 10–20 | 15 |
1 | 30–60 | 50 |
0.8 | 10–20 | 12 |
0.5 | 10–20 | 10 |
R | Max. 10 | 5 |
Variable | Symbol | Unit | Value |
---|---|---|---|
Speed-length ratio | v | m/s | 0.4954 |
Total friction path | s | km | 5.0527 |
Time of the test | t | min | 170 |
Element Content (%) | |||||
---|---|---|---|---|---|
C | Mn | Si | P | S | N |
0.2 | 1.4 | - | 0.045 | 0.045 | 0.009 |
Electrode Number | Chemical Composition (%) | ||||||
---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | Mo | P | S | |
Electrode 1 | 2.1 | 1.1 | 0.75 | 6.5 | 0.4 | - | - |
Electrode 2 | 0.5 | 0.4 | 1.8 | 9 | - | - | - |
Electrode 3 | 0.55 | 0.5 | 1.5 | 4.5 | 0.5 | - | - |
Element | Electrode 1 | Electrode 2 | Electrode 3 |
---|---|---|---|
Av | Av | Av | |
C | 1.7645 | 0.3526 | 0.4728 |
Si | 1.3167 | 1.3043 | 1.2554 |
Mn | 1.2791 | 0.4216 | 0.5703 |
P | 0.0175 | 0.0135 | 0.0285 |
S | 0.0134 | 0.0108 | 0.0102 |
Cr | 5.3347 | 7.1937 | 4.0569 |
Mo | 0.2944 | <0.001 | 0.393 |
Ni | 0.0587 | 0.0731 | 0.0352 |
Al | 0.02 | 0.0172 | 0.0083 |
Cu | 0.0764 | 0.0556 | 0.0316 |
B | <0.0005 | <0.0005 | <0.0005 |
Nb | <0.001 | 0.0051 | 0.0242 |
Co | 0.0103 | 0.0091 | 0.0073 |
V | 0.0569 | 0.0083 | 0.0545 |
W | <0.003 | <0.003 | 0.4397 |
Sn | 0.0086 | - | 0.0082 |
Pb | <0.003 | <0.02 | <0.003 |
As | <0.005 | - | <0.005 |
Bi | <0.003 | - | <0.003 |
Ca | 0.0007 | - | <0.0005 |
Ti | 0.0092 | 0.0243 | 0.0474 |
Sb | 0.0926 | - | 0.0981 |
Zn | <0.001 | - | <0.001 |
Zr | 0.5252 | - | 0.0035 |
Fe | 89.117 | 90.511 | 92.448 |
N | - | <0.02 | - |
Test Place | Structure Image | Structure Description |
---|---|---|
Core | A mixture of ferrite with particles of pearlite |
Test Place | Structure Image | Structure Description |
---|---|---|
Padding weld | Acicular structure | |
Weld interface | A mixture of ferrite with pearlite precipitations, visible slight overheating of the structure |
Test Place | Structure Image | Structure Description |
---|---|---|
Padding weld | Acicular structure | |
Weld interface | Visible overheating of the structure |
Test Place | Structure Image | Structure Description |
---|---|---|
Padding weld | Eutectoid mixture with secondary cementite | |
Weld interface | Visible overheating of the structure |
Parameter | Base Sample | Electrode 1 | Electrode 2 | Electrode 3 | |||
---|---|---|---|---|---|---|---|
Base Value | Padding Weld | Weld Interface | Padding Weld | Weld Interface | Padding Weld | Weld Interface | |
Mean value | 129.5 | 587.9 | 177.8 | 589.9 | 149.6 | 688.4 | 209.5 |
Standard deviation | 6.5 | 41.1 | 0.7 | 29.8 | 16.3 | 18.4 | 9.9 |
Sample | Mean Value | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|
Electrode 1 | 0.305 | 0.204 | 0.418 | 0.0694 |
Electrode 2 | 0.279 | 0.243 | 0.302 | 0.0227 |
Electrode 3 | 0.261 | 0.220 | 0.288 | 0.0262 |
Base sample | 0.342 | 0.307 | 0.383 | 0.0289 |
Sample | View of the Sample Surface Before Wear Test | View of the Sample Surface after Wear Test |
---|---|---|
Base sample | ||
Electrode 1 | ||
Electrode 2 | ||
Electrode 3 |
Samples | Before Wear Test | After Wear Test | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Unit | Base Sample | Electrode 1 | Electrode 2 | Electrode 3 | Base Sample | Electrode 1 | Electrode 2 | Electrode 3 |
Rz | µm | 6.79 | 21.92 | 9.49 | 19.38 | 4.85 | 2.23 | 2.75 | 2.27 |
Ra | µm | 1.02 | 4.59 | 1.79 | 4.79 | 0.70 | 0.31 | 0.42 | 0.34 |
Sa | µm | 1.49 | 11.68 | 1.85 | 5.94 | 0.86 | 0.98 | 1.06 | 0.97 |
Sample | View of the Surface Layer of the Sample Before Wear Test | View of the Surface Layer of the Sample after Wear Test |
---|---|---|
Base sample | ||
Electrode 1 | ||
Electrode 2 | ||
Electrode 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romek, D.; Ulbrich, D.; Selech, J.; Kowalczyk, J.; Wlad, R. Assessment of Padding Elements Wear of Belt Conveyors Working in Combination of Rubber–Quartz–Metal Condition. Materials 2021, 14, 4323. https://doi.org/10.3390/ma14154323
Romek D, Ulbrich D, Selech J, Kowalczyk J, Wlad R. Assessment of Padding Elements Wear of Belt Conveyors Working in Combination of Rubber–Quartz–Metal Condition. Materials. 2021; 14(15):4323. https://doi.org/10.3390/ma14154323
Chicago/Turabian StyleRomek, Dawid, Dariusz Ulbrich, Jaroslaw Selech, Jakub Kowalczyk, and Roksana Wlad. 2021. "Assessment of Padding Elements Wear of Belt Conveyors Working in Combination of Rubber–Quartz–Metal Condition" Materials 14, no. 15: 4323. https://doi.org/10.3390/ma14154323
APA StyleRomek, D., Ulbrich, D., Selech, J., Kowalczyk, J., & Wlad, R. (2021). Assessment of Padding Elements Wear of Belt Conveyors Working in Combination of Rubber–Quartz–Metal Condition. Materials, 14(15), 4323. https://doi.org/10.3390/ma14154323