Effect of Microstructure on the Dimensional Stability of Extruded Pure Aluminum
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. EBSD Analysis of Extruded Al after Annealing
3.2. Thermal Cycling Dimensional Stability
3.3. EBSD Analysis of Microstructure after Thermal Cycling
4. Conclusions
- An annealing temperature of 150 °C led to extruded pure aluminum with the best dimensional stability during thermal cycling and the lowest area fraction of <100> texture, with a texture intensity of 43.7. In an annealing temperature range of 150 °C~400 °C, the area fraction of grains with <100> orientation increased from 1.5% to 7.2%, while the intensity value of the texture decreased from 43.7 to 11.1 with the increase of temperature.
- The size of the sample declined with the increase of the number of cycles during the thermal cycling. The residual plastic strain of samples annealed at 150 °C, 350 °C and 400 °C were −1.6 × 10−5, −2.2 × 10−5 and −4.1 × 10−5 after twelve thermal cycles with ΔT = 120 °C, respectively. The dimensional stability of pure aluminum was progressively deteriorated with the increment of <100> texture and the decrement of <111> texture.
- Thermal cycling contributed to the formation of a large amount of equiaxed grains in the microstructure of pure aluminum, which were aligned along the <100> orientation. The area fractions of the grains with <100> orientation of the samples annealed at 150 °C, 350 °C and 400 °C after thermal cycling were 18.7%, 23.7% and 30.9%, respectively. The recrystallized grains with <100> orientation promoted the formation of new equiaxed grains with <100> orientation, which could be found through microstructure analysis.
- The residual plastic strain during thermal cycling was attributed to the orientation of grains being rotated from parallel to <111> orientation to parallel to <100> orientation. According to microstructure analysis and experimental results, dimensional stability during thermal cycling is associated with the change of the orientation of grains and the proportion of the texture with <100> orientation.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uju, W.A.; Oguocha, I.N.A. Thermal cycling behaviour of stir cast Al–Mg alloy reinforced with fly ash. Mater. Sci. Eng. A 2009, 526, 100–105. [Google Scholar] [CrossRef]
- Xie, Z.; Guo, H.; Zhang, Z.; Zhang, X. Thermal expansion behaviour and dimensional stability of Diamond/Cu composites with different diamond content. J. Alloy. Compd. 2019, 797, 122–130. [Google Scholar] [CrossRef]
- Cao, Y.; Jiang, L.; Gong, D.; Chen, G.; Xiu, Z.; Cheng, Y.; Wang, X.; Wu, G. Quantitative study of dimensional stability mechanism and microstructure evolution during precipitation process of 2024Al alloy. J. Mater. Sci. Technol. 2021, 90, 85–94. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, Y.; Chen, C.; Li, Z.; Gong, S.; Huang, Y.; Zhang, C.; Zhang, X. Effects of thermal treatments on the residual stress and micro-yield strength of Al2O3 dispersion strengthened copper alloy. J. Alloy. Compd. 2019, 781, 490–495. [Google Scholar] [CrossRef]
- Hogg, S.C.; Mi, J.; Nilsen, K.E.; Liotti, E.; Grant, P.S. Microstructure and property development in spray formed and extruded Al-Mg-Li-Zr alloys for aerospace and autosport applications. Mater. Und Werkst. 2010, 41, 562–567. [Google Scholar] [CrossRef]
- Song, Y.F.; Ding, X.F.; Zhao, X.J.; Xiao, L.R.; Guo, L. The effect of stress-aging on dimensional stability behavior of Al-Cu-Mg alloy. J. Alloy. Compd. 2017, 718, 298–303. [Google Scholar] [CrossRef]
- Wang, K.; Long, H.; Chen, Y.; Baniassadi, M.; Rao, Y.; Peng, Y. Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106460. [Google Scholar] [CrossRef]
- Lin, M.H.; Buchgraber, W.; Korb, G.; Kao, P.W. Thermal cycling induced deformation and damage in carbon fiber reinforced copper composite. Scr. Mater. 2002, 46, 169–173. [Google Scholar] [CrossRef]
- Tjong, S.C.; Tam, K.F.; Wu, S.Q. Thermal cycling characteristics of in-situ Al-based composites prepared by reactive hot pressing. Compos. Sci. Technol. 2003, 63, 89–97. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y.; Ma, B.; Zeng, C. Durability study on high-performance fiber-reinforced mortar under simulated wastewater pipeline environment. Materials 2021, 14, 3781. [Google Scholar] [CrossRef]
- Dickson, J.M.; Sanders, T.H. Crystallographic texture development in extruded AA 2195 and AA 7075. Mater. Charact. 2020, 160, 110121. [Google Scholar] [CrossRef]
- Gong, T.; Dong, J.; Shi, Z.; Yaer, X.; Liu, H. Effects of Ce-Rich mischmetal on microstructure evolution and mechanical properties of 5182 aluminum alloy. Materials 2019, 12, 4230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandaghi, M.R.; Pouraliakbar, H.; Khalaj, G.; Khalaj, M.-J.; Heidarzadeh, A. Study on the post-rolling direction of severely plastic deformed Aluminum-Manganese-Silicon alloy. Arch. Civ. Mech. Eng. 2016, 16, 876–887. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Firooz, S.; Jandaghi, M.R.; Khalaj, G.; Nazari, A. Predicting the ultimate grain size of aluminum sheets undergone constrained groove pressing. Int. J. Adv. Manuf. Technol. 2016, 86, 1639–1658. [Google Scholar] [CrossRef]
- Yang, F.; Wu, G.; Sun, D.; Shao, H. Study on isotropy treatment process of hot extruded LY12 Al alloy. Mater. Sci. Eng. A 2000, 280, 50–53. [Google Scholar]
- Chen, X.; Zhan, L.; Xu, Y.; Ma, Z.; Zheng, Q. Anisotropy in creep ageing behavior of textured Al-Cu alloy under different stress states. Mater. Charact. 2020, 168, 110539. [Google Scholar] [CrossRef]
- Song, X.; Wang, F.; Qian, D.; Hua, L. Tailoring the residual stress and mechanical properties by electroshocking treatment in cold rolled M50 steel. Mater. Sci. Eng. A 2020, 780, 139171. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y.; Liu, Y.; Wang, F.; Jia, N. Tailoring strength and ductility of a Cr-containing high carbon steel by cold-working and annealing. Materials 2019, 12, 4136. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, S.; Yan, F.; Zhang, Z.; Wu, Y. Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion process and heat treatment. Materials 2019, 12, 4223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, J.P.; Chen, Q.Y.; Wang, Q.; Yu, H.Y.; Zhang, Z.J.; Li, R.; Li, X.W.; Zhang, Z.F. Effects of annealing treatment on the microstructure evolution and the strength degradation behavior of the commercially pure Al conductor. Mater. Sci. Eng. A 2017, 707, 511–517. [Google Scholar] [CrossRef]
- Xiao, L.R.; Tu, X.X.; Zhao, X.J.; Cai, Z.Y.; Song, Y.F. Microstructural evolution and dimensional stability of TiC-reinforced steel matrix composite during tempering. Mater. Lett. 2020, 259, 126871. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, Z.; Li, W.; Sun, Z.; Tian, J.; Xie, C.; Guo, J.; Liao, Z.; Yi, D.; Zhang, J.; et al. Micro-mechanism of texture evolution during isochronal annealing of as-annealed hot rolled Al-Cu-Mg sheet. Mater. Des. 2019, 165, 107575. [Google Scholar] [CrossRef]
- Wang, X.; Guo, M.; Chapuis, A.; Luo, J.; Zhang, J.; Zhuang, L. The dependence of final microstructure, texture evolution and mechanical properties of Al–Mg–Si–Cu alloy sheets on the intermediate annealing. Mater. Sci. Eng. A 2015, 633, 46–58. [Google Scholar] [CrossRef]
- Signorelli, J.W.; Turner, P.A.; Sordi, V.; Ferrante, M.; Vieira, E.A.; Bolmaro, R.E. Computational modeling of texture and microstructure evolution in Al alloys deformed by ECAE. Scr. Mater. 2006, 55, 1099–1102. [Google Scholar] [CrossRef]
- Hitzler, L.; Hafenstein, S.; Mendez Martin, F.; Clemens, H.; Sert, E.; Ochsner, A.; Merkel, M.; Werner, E. Heat treatments and critical quenching rates in additively manufactured Al-Si-Mg alloys. Materials (Basel) 2020, 13, 720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suo, C.; Ma, P.; Jia, Y.; Liu, X.; Shi, X.; Yu, Z.; Prashanth, K.G. Annealing of Al-Zn-Mg-Cu Alloy at High Pressures: Evolution of Microstructure and the Corrosion Behavior. Materials (Basel) 2021, 14, 2076. [Google Scholar] [CrossRef] [PubMed]
- Zi, A.; Stulikova, I.; Smola, B. Response of aluminum processed by extrusion preceded ECAP to isochronal annealing. Mater. Sci. Eng. A 2010, 527, 1469–1472. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, P.; Zhang, B.; Fan, H.; Xu, X.; Li, W.; Fan, X.; Wang, J.; Ding, H. Microstructure and texture evolution of cold rolled 1070 Al alloy during the subsequent annealing treatment. Results Phys. 2019, 13, 102178. [Google Scholar] [CrossRef]
- Dhal, A.; Panigrahi, S.K.; Shunmugam, M.S. Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys. J. Alloy. Compd. 2017, 726, 1205–1219. [Google Scholar] [CrossRef]
- Du, Z.; Ma, Y.; Liu, F.; Xu, N.; Chen, Y.; Wang, X.; Chen, Y.; Gong, T.; Xu, D. The influences of process annealing temperature on microstructure and mechanical properties of near β high strength titanium alloy sheet. Materials 2019, 12, 1478. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wu, Y.; Gong, H.; Dong, F.; Ahmad, A.S. Modified kinetic model for describing continuous dynamic recrystallization behavior of Al 2219 alloy during hot deformation process. J. Alloy. Compd. 2020, 817, 153301. [Google Scholar] [CrossRef]
- Naghdy, S.; Pirgazi, H.; Verleysen, P.; Petrov, R.; Kestens, L. Morphological and crystallographic anisotropy of severely deformed commercially pure aluminium by three-dimensional electron backscatter diffraction. J. Appl. Crystallogr. 2017, 50, 1512–1523. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.B.; Shao, W.Z.; Jiang, J.T.; Chao, D.Y.; Zhen, L. Influence of quenching rate on microstructure and dimensional stability of Al–Cu–Mg–Si alloy. Mater. Sci. Technol. 2016, 32, 1861–1868. [Google Scholar] [CrossRef]
- Jiang, L.T.; Wu, G.H.; Yang, W.S.; Zhao, Y.G.; Liu, S.S. Effect of heat treatment on microstructure and dimensional stability of ZL114A aluminum alloy. Trans. Nonferrous Met. Soc. China 2010, 20, 2124–2128. [Google Scholar] [CrossRef]
- Jin, C.; Niu, J.T.; Shi, C.Y. Study on the dimensional stability of aluminum alloy welded joint under space thermal cycling conditions. Appl. Mech. Mater. 2010, 29, 1850–1854. [Google Scholar] [CrossRef]
- Wei, X.; Kysar, J.W. Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films. Acta Mater. 2011, 59, 3937–3945. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, K.; Marthinsen, K.; Logé, R.E. Controlling grain structure and texture in Al-Mn from the competition between precipitation and recrystallization. Acta Mater. 2017, 141, 360–373. [Google Scholar] [CrossRef]
- Chekhonin, P.; Beausir, B.; Scharnweber, J.; Oertel, C.-G.; Hausöl, T.; Höppel, H.W.; Brokmeier, H.-G.; Skrotzki, W. Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates. Acta Mater. 2012, 60, 4661–4671. [Google Scholar] [CrossRef]
- Quadir, M.Z.; Ferry, M.; Al-Buhamad, O.; Munroe, P.R. Shear banding and recrystallization texture development in a multiayered Al alloy sheet produced by accumulative roll bounding. Acta Mater. 2009, 57, 29–40. [Google Scholar] [CrossRef]
- Chang, C.S.T.; Duggan, B.J. Relationships between rolled grain shape, deformation bands, microstructures and recrystallization textures in Al-5%Mg. Acta Mater. 2010, 58, 467–489. [Google Scholar] [CrossRef]
- Duggan, B.J.; Sindel, M.; Köhlhoff, G.D.; Lücke, K. Oriented nucleation, oriented growth and twinning in cube texture formation. Acta Metall. Et Mater. 1990, 38, 103–111. [Google Scholar] [CrossRef]
- Dillamore, I.L.; Katoh, H. The mechanisms of recrystallization in cubic metals with particular reference to their orientation-dependence. Met. Sci. 1974, 8, 73–83. [Google Scholar] [CrossRef]
- Shen, F.; Li, W.; Sun, Z.; Zhou, Z.; Xie, C.; Liao, Z.; Yi, D. Insights of texture and microstructure evolution in the short time annealing of Al-Cu-Mg alloy at large temperature range. J. Alloy. Compd. 2021, 871, 159613. [Google Scholar] [CrossRef]
- Lee, D.N.; Jeong, H.-T. Recrystallization texture of aluminum bicrystals with S orientations deformed by channel die compression. Mater. Sci. Eng. A 1999, 269, 49–58. [Google Scholar]
- Jiao, H.; Xu, Y.; Zhao, L. Texture evolution in twin-roll strip cast non-oriented electrical steel with strong Cube and Goss texture. Acta Mater. 2020, 199, 311–325. [Google Scholar] [CrossRef]
- Fan, X.; Li, Y.; Xu, C.; Wang, B.; Peng, R.; Chen, J. Improved mechanical anisotropy and texture optimization of a 3xx aluminum alloy by differential temperature rolling. Mater. Sci. Eng. A 2021, 799, 140–145. [Google Scholar] [CrossRef]
- Sidor, J.J.; Petrov, R.H.; Kestens, L.A.I. Modeling the crystallographic texture changes in aluminum alloys during recrystallization. Acta Mater. 2011, 59, 5735–5748. [Google Scholar] [CrossRef]
- Qu, S.G.; Lou, H.S.; Li, X.Q.; Kuang, T.R.; Lou, J.Y. Effect of heat-treatment on stress relief and dimensional stability behavior of SiCp/Al composite with high SiC content. Mater. Des. 2015, 86, 508–515. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, M.; Shen, F.; Yi, D.; Wang, B. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables. Mater. Sci. Eng. A 2018, 710, 27–37. [Google Scholar] [CrossRef]
- Zhang, X.X.; Andrä, H.; Harjo, S.; Gong, W.; Kawasaki, T.; Lutz, A.; Lahres, M. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation. Mater. Des. 2021, 198, 109339. [Google Scholar] [CrossRef]
- Longsworth, M.; Fivel, M. The effect of stress on the cross-slip energy in face-centered cubic metals: A study using dislocation dynamics simulations and line tension models. J. Mech. Phys. Solids 2021, 148, 104281. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, A.; Dandekar, T.R.; Khatirkar, R.K. Microstructure and texture development in AA3003 aluminium alloy. Mater. Today Commun. 2020, 24, 100965. [Google Scholar] [CrossRef]
- Fang, H.; Liu, H.; Yan, Y.; Luo, X.; Xu, X.; Chu, X.; Lu, Y.; Yu, K.; Wang, D. Evolution of texture, microstructure, tensile strength and corrosion properties of annealed Al–Mg–Sc–Zr alloys. Mater. Sci. Eng. A 2021, 804, 140682. [Google Scholar] [CrossRef]
- Kraner, J.; Fajfar, P.; Palkowski, H.; Kugler, G.; Godec, M.; Paulin, I. Microstructure and texture evolution with relation to mechanical properties of compared symmetrically and asymmetrically cold rolled aluminum alloy. Metals 2020, 10, 156. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, H.F.; Margulies, L.; Schmidt, S.; Winther, G. Lattice rotations of individual bulk grains. Acta Mater. 2003, 51, 3821–3830. [Google Scholar] [CrossRef]
- Cioffi, F.; Hidalgo, J.I.; Fernández, R.; Pirling, T.; Fernández, B.; Gesto, D.; Puente Orench, I.; Rey, P.; González-Doncel, G. Analysis of the unstressed lattice spacing, d0, for the determination of the residual stress in a friction stir welded plate of an age-hardenable aluminum alloy—Use of equilibrium conditions and a genetic algorithm. Acta Mater. 2014, 74, 189–199. [Google Scholar] [CrossRef] [Green Version]
Texture | {φ1, φ, φ2} | Miller Index | Texture | {φ1, φ, φ2} | Miller Index |
---|---|---|---|---|---|
Cube | {0°, 0°, 0°} | {001} <100> | R–CubeRD | {0°, 20°, 0°} | {013} <100> |
R-Cube | {45°, 0°, 0°} | {001} <110> | P | {70°, 45°, 0°} | {011} <1−22> |
G/B | {20°, 45°, 0°} | {011} <4−11> | G/BT | {50°, 45°, 0°} | {011} <1−11> |
Goss | {0°, 45°, 0°} | {110} <001> | R–Goss | {90°, 45°, 0°} | {011} <0−11> |
S | {59°, 37°, 43°} | {123} <63−4> | GossT | {90°, 25°, 45°} | {113} <332> |
Copper | {90°, 35°, 45°} | {112} <11−1> | R–Copper | {0°, 35°, 45°} | {112} <1−10> |
E | {0°, 55°, 45°} | {111} <1−10> | F | {90°, 55°, 45°} | {111} <−1−12> |
Brass | {35°, 45°, 0°} | {011} <2−11> | m–Brass | {50°, 65°, 63°} | {211} <0−11> |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Wu, G.; Zhou, C.; Xiu, Z.; Yang, W.; Qiao, J. Effect of Microstructure on the Dimensional Stability of Extruded Pure Aluminum. Materials 2021, 14, 4797. https://doi.org/10.3390/ma14174797
Fu L, Wu G, Zhou C, Xiu Z, Yang W, Qiao J. Effect of Microstructure on the Dimensional Stability of Extruded Pure Aluminum. Materials. 2021; 14(17):4797. https://doi.org/10.3390/ma14174797
Chicago/Turabian StyleFu, Linlin, Gaohui Wu, Chang Zhou, Ziyang Xiu, Wenshu Yang, and Jing Qiao. 2021. "Effect of Microstructure on the Dimensional Stability of Extruded Pure Aluminum" Materials 14, no. 17: 4797. https://doi.org/10.3390/ma14174797
APA StyleFu, L., Wu, G., Zhou, C., Xiu, Z., Yang, W., & Qiao, J. (2021). Effect of Microstructure on the Dimensional Stability of Extruded Pure Aluminum. Materials, 14(17), 4797. https://doi.org/10.3390/ma14174797