Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Photocatalysts
2.2. Characterization Techniques
2.3. Photocatalytic Reactions
3. Results and Discussion
3.1. Synthesis and Characterization of TiO2-Supported Subnanometre Ru Particles
3.2. Influence of Ru Nanoparticle Characteristics on Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Melchionna, M.; Fornasiero, P. Updates on the Roadmap for Photocatalysis. ACS Catal. 2020, 10, 5493–5501. [Google Scholar] [CrossRef] [Green Version]
- Perović, K.; Dela Rosa, F.M.; Kovačić, M.; Kušić, H.; Štangar, U.L.; Fresno, F.; Dionysiou, D.D.; Bozic, A.L. Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. Materials 2020, 13, 1338. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, D.; Han, H.; Li, C. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. [Google Scholar] [CrossRef] [PubMed]
- Wenderich, K.; Mul, G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116, 14587–14619. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Taniguchi, Y.; Yoneyama, H.; Tamura, H. Effective Surfaces of Semiconductor Catalysts for Light-Induced Heterogeneous Reactions Evaluated by Simultaneous Photodeposition of Both Oxidation and Reduction Products. J. Phys. Chem. 1983, 87, 768–778. [Google Scholar] [CrossRef]
- Rufus, I.B.; Ramakrishnan, V.; Viswanathan, B.; Kuriacose, J.C. Interface and Surface Analysis of Ru/CdS. J. Mater. Sci. Lett. 1996, 15, 1921–1923. [Google Scholar] [CrossRef]
- Vignolo-González, H.A.; Laha, S.; Jiménez-Solano, A.; Oshima, T.; Duppel, V.; Schützendübe, P.; Lotsch, B.V. Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO2@TiO2 as a Benchmark. Matter 2020, 3, 464–486. [Google Scholar] [CrossRef]
- Wojciechowska, J.; Jędrzejczyk, M.; Grams, J.; Keller, N.; Ruppert, A.M. Enhanced Production of γ-Valerolactone with an Internal Source of Hydrogen on Ca-Modified TiO2 Supported Ru Catalysts. ChemSusChem 2019, 12, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Shang, Y.; Lu, Y.; Qu, L.; Yao, H.; Li, Z.; Liu, Q. Photoinduced Homogeneous RuO2 Nanoparticles on TiO2 Nanowire Arrays: A High-Performance Cathode toward Flexible Li–CO2 Batteries. J. Power Sources 2020, 475, 1–9. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Nie, Z.; Zhao, Y.; Wang, H. Metal/Metal Oxide Nanoparticles-Composited Porous Carbon for High-Performance Supercapacitors. J. Energy Storage 2021, 38, 102479. [Google Scholar] [CrossRef]
- Salvatore, D.A.; Peña, B.; Dettelbach, K.E.; Berlinguette, C.P. Photodeposited Ruthenium Dioxide Films for Oxygen Evolution Reaction Electrocatalysis. J. Mater. Chem. A 2017, 5, 1575–1580. [Google Scholar] [CrossRef]
- Arimoto, S.; Nakano, H.; Fujita, T.; Tachibana, Y.; Kuwabata, S. Electrocatalytic Activity of Pt and Ru Photodeposited Polyaniline Electrodes for Methanol Oxidation. Electrochemistry 2007, 75, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowska, J.; Gitzhofer, E.; Grams, J.; Ruppert, A.M.; Keller, N. Solar Light Induced Photon-Assisted Synthesis of TiO2 Supported Highly Dispersed Ru Nanoparticle Catalysts. Materials 2018, 11, 2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, J.M.; Disdier, J.; Pichat, P. Photoassisted Platinum Deposition on TiO2 Powder Using Various Platinum Complexes. J. Phys. Chem. 1986, 90, 6028–6034. [Google Scholar] [CrossRef]
- Murcia, J.J.; Navío, J.A.; Hidalgo, M.C. Insights towards the Influence of Pt Features on the Photocatalytic Activity Improvement of TiO2 by Platinisation. Appl. Catal. B Environ. 2012, 126, 76–85. [Google Scholar] [CrossRef]
- Lucena, R.; Fresno, F.; Conesa, J.C. Spectral Response and Stability of In2S3 as Visible Light-Active Photocatalyst. Catal. Commun. 2012, 20, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hamandi, M.; Berhault, G.; Guillard, C.; Kochkar, H. Reduced Graphene Oxide/TiO2 Nanotube Composites for Formic Acid Photodegradation. Appl. Catal. B Environ. 2017, 209, 203–213. [Google Scholar] [CrossRef]
- Garcia-Muñoz, P.; Dachtler, W.; Altmayer, B.; Schulz, R.; Robert, D.; Seitz, F.; Rosenfeldt, R.; Keller, N. Reaction Pathways, Kinetics and Toxicity Assessment during the Photocatalytic Degradation of Glyphosate and Myclobutanil Pesticides: Influence of the Aqueous Matrix. Chem. Eng. J. 2020, 384, 123315. [Google Scholar] [CrossRef]
- García-Muñoz, P.; Pliego, G.; Zazo, J.A.; Bahamonde, A.; Casas, J.A. Sulfonamides Photoassisted Oxidation Treatments Catalyzed by Ilmenite. Chemosphere 2017, 180, 523–530. [Google Scholar] [CrossRef]
- Belapurkar, A.D.; Kamble, V.S.; Dey, G.R. Photo-Oxidation of Ethylene in Gas Phase and Methanol and Formic Acid in Liquid Phase on Synthesized TiO2 and Au/TiO2 Catalysts. Mater. Chem. Phys. 2010, 123, 801–805. [Google Scholar] [CrossRef]
- Mrowetz, M.; Selli, E. Photocatalytic Degradation of Formic and Benzoic Acids and Hydrogen Peroxide Evolution in TiO2 and ZnO Water Suspensions. J. Photochem. Photobiol. A Chem. 2006, 180, 15–22. [Google Scholar] [CrossRef]
- Muggli, D.S.; Backes, M.J. Two Active Sites for Photocatalytic Oxidation of Formic Acid on TiO2: Effects of H2O and Temperature. J. Catal. 2002, 209, 105–113. [Google Scholar] [CrossRef]
- Doniach, S.; Sunjic, M. Many-Electron Singularity in X-Ray Photoemission and X-Ray Line Spectra from Metals. J. Phys. C Solid State Phys. 1970, 3, 285–291. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.D.; Davis, L.E.; Zeller, M.V.; Taylor, J.A.; Raymond, R.H.; Gale, L.H. Empirical Atomic Sensitivity Factors for Quantitative Analysis by Electron Spectroscopy for Chemical Analysis. Surf. Interface Anal. 1981, 3, 211–225. [Google Scholar] [CrossRef]
- Wojciechowska, J.; Gitzhofer, E.; Grams, J.; Ruppert, A.M.; Keller, N. Light-Driven Synthesis of Sub-Nanometric Metallic Ru Catalysts on TiO2. Catal. Today 2019, 326, 8–14. [Google Scholar] [CrossRef]
- Collado, L.; Reynal, A.; Fresno, F.; Barawi, M.; Escudero, C.; Perez-Dieste, V.; Coronado, J.M.; Serrano, D.P.; Durrant, J.R.; de la Peña O’Shea, V.A. Unravelling the Effect of Charge Dynamics at the Plasmonic Metal/Semiconductor Interface for CO2 Photoreduction. Nat. Commun. 2018, 9, 4986. [Google Scholar] [CrossRef]
- Herrmann, J.M. Photocatalysis Fundamentals Revisited to Avoid Several Misconceptions. Appl. Catal. B Environ. 2010, 99, 461–468. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef]
- Maeda, K.; Abe, R.; Domen, K. Role and Function of Ruthenium Species as Promoters with TaON-Based Photocatalysts for Oxygen Evolution in Two-Step Water Splitting under Visible Light. J. Phys. Chem. C 2011, 115, 3057–3064. [Google Scholar] [CrossRef]
- Ismail, A.A.; Bahnemann, D.W.; Al-Sayari, S.A. Synthesis and Photocatalytic Properties of Nanocrystalline Au, Pd and Pt Photodeposited onto Mesoporous RuO2-TiO2 Nanocomposites. Appl. Catal. A Gen. 2012, 431–432, 62–68. [Google Scholar] [CrossRef]
- Tamez Uddin, M.; Nicolas, Y.; Olivier, C.; Toupance, T.; Müller, M.M.; Kleebe, H.-J.; Rachut, K.; Ziegler, J.; Klein, A.; Jaegermann, W. Preparation of RuO2/TiO2 Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations. J. Phys. Chem. C 2013, 117, 22098–22110. [Google Scholar] [CrossRef]
Sample | Synthesis Time (h) | Ru wt.% a | Photodeposition Yield (%) b | Ru/Ti at. c | Ru0/(Ru0 + Ruδ+) c | Ru Mean Size (nm) d |
---|---|---|---|---|---|---|
Ru-14 | 7.5 | 0.21 | 42 | 0.013 | 0.48 | 0.7 ± 0.2 |
Ru-28 | 6 | 0.23 | 46 | 0.014 | 0.66 | 0.7 ± 0.2 |
Ru-41 | 2 | 0.20 | 40 | 0.012 | 0.65 | 0.6 ± 0.2 |
Ru-70 | 1 | 0.21 | 42 | 0.011 | 0.85 | 1.3 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Muñoz, P.; Fresno, F.; Ivanez, J.; Keller, N. Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions. Materials 2021, 14, 4799. https://doi.org/10.3390/ma14174799
García-Muñoz P, Fresno F, Ivanez J, Keller N. Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions. Materials. 2021; 14(17):4799. https://doi.org/10.3390/ma14174799
Chicago/Turabian StyleGarcía-Muñoz, Patricia, Fernando Fresno, Javier Ivanez, and Nicolas Keller. 2021. "Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions" Materials 14, no. 17: 4799. https://doi.org/10.3390/ma14174799
APA StyleGarcía-Muñoz, P., Fresno, F., Ivanez, J., & Keller, N. (2021). Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions. Materials, 14(17), 4799. https://doi.org/10.3390/ma14174799