Loss Factor Behavior of Thermally Aged Magnetorheological Elastomers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Analysis
2.2. Magnetic Properties
2.3. Rheological Properties
2.3.1. Loss Factor (tan δ) of SR-MRE Samples
2.3.2. Phase Shift Angle (δ)
3. Methodology
3.1. Samples Preparation
3.2. Samples Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Au-Yeung, K.Y.; Yang, B.; Sun, L.; Bai, K.; Yang, Z. Super Damping of Mechanical Vibrations. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Bialas, K. Reduction of vibrations in mechanical systems using piezoelectric elements. MATEC Web Conf. 2018, 178, 06023. [Google Scholar] [CrossRef]
- Xu, X.; Han, Q.; Chu, F. Review of Electromagnetic Vibration in Electrical Machines. Energies 2018, 11, 1779. [Google Scholar] [CrossRef] [Green Version]
- Reducing noise and vibration from machine tools. Noise Vib. Worldw. 2016, 47, 133–139. [CrossRef] [Green Version]
- Maiti, M.; Sadhu, S.D.; Bhowmick, A.K. Ethylene–octene copolymer (engage)–clay nanocomposites: Preparation and characterization. J. Appl. Polym. Sci. 2006, 101, 603–610. [Google Scholar] [CrossRef]
- Gibson, R.F. A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 2010, 92, 2793–2810. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, L.; Liu, J.; Liu, Y.; Cheng, J.; Luo, J.; Liang, Y.; Tao, Y.; Wang, X.; Zhao, J. Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene. Polymer 2012, 53, 3378–3385. [Google Scholar] [CrossRef]
- Kashi, S.; De Souza, M.; Al-Assafi, S.; Varley, R. Understanding the Effects of In-Service Temperature and Functional Fluid on the Ageing of Silicone Rubber. Polymers 2019, 11, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malas, A.; Pal, P.; Das, C.K. Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater. Des. 2014, 55, 664–673. [Google Scholar] [CrossRef]
- Shabdin, M.K.; Zainudin, A.A.; Mazlan, S.A.; Rahman, M.A.A.; Aziz, S.A.A.; Bahiuddin, I.; Choi, S.-B. Tunable low range Gr induced magnetorheological elastomer with magnetically conductive feedback. Smart Mater. Struct. 2020, 29, 057001. [Google Scholar] [CrossRef]
- Aziz, S.A.A.; Mazlan, S.A.; Ubaidillah, U.; Shabdin, M.K.; Yunus, N.A.; Nordin, N.A.; Choi, S.-B.; Rosnan, R.M. Enhancement of Viscoelastic and Electrical Properties of Magnetorheological Elastomers with Nanosized Ni-Mg Cobalt-Ferrites as Fillers. Materials 2019, 12, 3531. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.F.; Li, W.; Deng, Y.M. Sensing capabilities of graphite based MR elastomers. Smart Mater. Struct. 2011, 20. [Google Scholar] [CrossRef]
- Sedlacik, M.; Mrlik, M.; Babayan, V.; Pavlinek, V. Magnetorheological elastomers with efficient electromagnetic shielding. Compos. Struct. 2016, 135, 199–204. [Google Scholar] [CrossRef]
- Cao, X.G.; Ren, H.; Zhang, H.Y. Preparation and microwave shielding property of silver-coated carbonyl iron powder. J. Alloy. Compd. 2015, 631, 133–137. [Google Scholar] [CrossRef]
- Li, Y.; Li, J. A Highly Adjustable Base Isolator Utilizing Magnetorheological Elastomer: Experimental Testing and Modeling. J. Vib. Acoust. 2015, 137, 011009. [Google Scholar] [CrossRef]
- Sun, S.; Deng, H.; Yang, J.; Li, W.; Du, H.; Alici, G.; Nakano, M. An adaptive tuned vibration absorber based on multilayered MR elastomers. Smart Mater. Struct. 2015, 24, 045045. [Google Scholar] [CrossRef]
- Jeong, U.-C. Application of Adaptive Tuned Magneto-Rheological Elastomer for Vibration Reduction of a Plate by a Variable-Unbalance Excitation. Appl. Sci. 2020, 10, 3934. [Google Scholar] [CrossRef]
- Chung, D.D.L. Review: Materials for vibration damping. J. Mater. Sci. 2001, 36, 5733–5737. [Google Scholar] [CrossRef]
- Li, Z.; Lu, X.; Tao, G.; Guo, J.; Jiang, H. Damping elastomer with broad temperature range based on irregular networks formed by end-linking of hydroxyl-terminated poly(dimethylsiloxane). Polym. Eng. Sci. 2015, 56, 97–102. [Google Scholar] [CrossRef]
- Shi, X.; Weina, B.; Shugao, Z. Study on the damping of EVM based blends. J. Appl. Polym. Sci. 2010, 120, 1121–1125. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Wang, W.; Geng, X.; Zhang, L.; Guo, B.; Nishi, T.; Hu, G.-H. Significantly Improving Strength and Damping Performance of Nitrile Rubber via Incorporating Sliding Graft Copolymer. Ind. Eng. Chem. Res. 2018, 57, 16692–16700. [Google Scholar] [CrossRef]
- Poojary, U.R.; Hegde, S.; Gangadharan, K.V. Experimental investigation on the effect of carbon nanotube additive on the field-induced viscoelastic properties of magnetorheological elastomer. J. Mater. Sci. 2017, 53, 4229–4241. [Google Scholar] [CrossRef]
- Krainoi, A.; Kummerlöwe, C.; Nakaramontri, Y.; Vennemann, N.; Pichaiyut, S.; Wisunthorn, S.; Nakason, C. Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym. Test. 2018, 66, 122–136. [Google Scholar] [CrossRef]
- Yu, M.; Ju, B.; Fu, J.; Liu, X.; Yang, Q. Influence of composition of carbonyl iron particles on dynamic mechanical properties of magnetorheological elastomers. J. Magn. Magn. Mater. 2012, 324, 2147–2152. [Google Scholar] [CrossRef]
- Jong, L. Effect of soy spent flakes and carbon black co-filler in rubber composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 252–264. [Google Scholar] [CrossRef]
- Sedlacik, M.; Pavlinek, V.; Peer, P.; Filip, P. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature. Dalton Trans. 2014, 43, 6919–6924. [Google Scholar] [CrossRef] [Green Version]
- Joy, J.; George, E.; Thomas, S.; Anas, S. Effect of filler loading on polymer chain confinement and thermomechanical properties of epoxy/boron nitride (h-BN) nanocomposites. New J. Chem. 2020, 44, 4494–4503. [Google Scholar] [CrossRef]
- Bodnaruk, A.V.; Brunhuber, A.; Kalita, V.M.; Kulyk, M.M.; Snarskii, A.A.; Lozenko, A.; Ryabchenko, S.M.; Shamonin, M. Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler. J. Appl. Phys. 2018, 123, 115118. [Google Scholar] [CrossRef] [Green Version]
- Azammi, A.N.; Sapuan, S.; Ishak, M.R.; Sultan, M.T. Physical and damping properties of kenaf fibre filled natural rubber/thermoplastic polyurethane composites. Def. Technol. 2019, 16, 29–34. [Google Scholar] [CrossRef]
- Yunus, N.A.; Mazlan, S.A.; Ubaidillah; Aziz, S.A.A.; Shilan, S.T.; Wahab, N.A.A. Thermal Stability and Rheological Properties of Epoxidized Natural Rubber-Based Magnetorheological Elastomer. Int. J. Mol. Sci. 2019, 20, 746. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.; Yu, M.; Fu, J.; Zhu, M.; Xie, Y.; Li, W. An EPDM/MVQ polymer blend based magnetorheological elastomer with good thermostability and mechanical performance. Soft Matter 2018, 14, 8521–8528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Pal, K.; Byeon, J.-U.; Han, S.-M.; Kim, J.K. A study on mechanical and thermal properties of silicone rubber/EPDM damping materials. J. Appl. Polym. Sci. 2010, 119, 2737–2741. [Google Scholar] [CrossRef]
- Aziz, S.A.A.; Mazlan, S.A.; Ubaidillah, U.; Mohamad, N.; Choi, S.-B.; Aziz, M.A.C.; Johari, M.A.F.; Homma, K. Thermal Aging Rheological Behavior of Magnetorheological Elastomers Based on Silicone Rubber. Int. J. Mol. Sci. 2020, 21, 9007. [Google Scholar] [CrossRef]
- Rodríguez, H.A.; Kriven, W.M.; Casanova, H. Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state. Mater. Sci. Eng. C 2019, 101, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Pérez, E.; Lauke, B. Evaluation of the particle geometry and interphase influence on the filler-matrix debonding process. Mater. Res. Express 2019, 6. [Google Scholar] [CrossRef]
- Susanto, T.; Affandy, R.; Katon, G.; Rahmaniar. Thermal aging properties of natural rubber-styrene butadiene rubber composites filled with modified starch from Dioscorea Hispida Denst extract prepared by latex compounding method. In AIP Conference Proceedings; American Institute of Physics USA: College Park, GA, USA, 2018; Volume 2049, p. 020016. [Google Scholar]
- Alzoubi, G.M.; Albiss, B.A.; Shatnawi, M.; Bsoul, I.; Alsmadi, A.M.; Salameh, B.; Alna’Washi, G.A. Influence of High-Temperature Annealing on Structural and Magnetic Properties of Crystalline Cobalt Ferrite Nanoparticles in the Single-Domain Regime. J. Supercond. Nov. Magn. 2020, 33, 3179–3188. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, H.; Wang, J.; Zheng, J.; Ouyang, Q. Dynamic rheological properties of polyurethane-based magnetorheological gels studied using oscillation shear tests. RSC Adv. 2019, 9, 10124–10134. [Google Scholar] [CrossRef] [Green Version]
- Lago, E.D.; Cagnin, E.; Boaretti, C.; Roso, M.; Lorenzetti, A.; Modesti, M. Influence of Different Carbon-Based Fillers on Electrical and Mechanical Properties of a PC/ABS Blend. Polymers 2019, 12, 29. [Google Scholar] [CrossRef] [Green Version]
- Marín-Genescà, M.; García-Amorós, J.; Mujal-Rosas, R.; Massagués, L.; Colom, X. Study and Characterization of the Dielectric Behavior of Low Linear Density Polyethylene Composites Mixed with Ground Tire Rubber Particles. Polymers 2020, 12, 1075. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Rikken, R.S.M.; Nolte, R.; Maan, J.C.; Van Hest, J.C.M.; Wilson, D.A.; Christianen, P.C.M. Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 2014, 10, 1295–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.K.; Pal, T.; Sharma, R.; Kar, K.K. Study of matrix–filler interaction through correlations between structural and viscoelastic properties of carbonous-filler/polymer-matrix composites. J. Appl. Polym. Sci. 2019, 137. [Google Scholar] [CrossRef]
- Maciejewska, M.; Sowińska, A. Thermal characterization of the effect of fillers and ionic liquids on the vulcanization and properties of acrylonitrile–butadiene elastomer. J. Therm. Anal. Calorim. 2019, 138, 4359–4373. [Google Scholar] [CrossRef] [Green Version]
- Araujo-Morera, J.; Verdugo-Manzanares, R.; González, S.; Verdejo, R.; Lopez-Manchado, M.; Santana, M.H. On the Use of Mechano-Chemically Modified Ground Tire Rubber (GTR) as Recycled and Sustainable Filler in Styrene-Butadiene Rubber (SBR) Composites. J. Compos. Sci. 2021, 5, 68. [Google Scholar] [CrossRef]
- Čulin, J.; Gembarovski, D.; Andreis, M.; Veksli, Z.; Marinović, T. Effect of thermal oxidative ageing on the morphology of natural rubber networks as viewed by ESR. Polym. Int. 2000, 49, 845–852. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Santana, M.H.; Verdejo, R.; López-Manchado, M.A. Giving a Second Opportunity to Tire Waste: An Alternative Path for the Development of Sustainable Self-Healing Styrene–Butadiene Rubber Compounds Overcoming the Magic Triangle of Tires. Polymers 2019, 11, 2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukla, M.; Warguła, Ł.; Talaśka, K.; Wojtkowiak, D. Magnetorheological Elastomer Stress Relaxation Behaviour during Compression: Experiment and Modelling. Materials 2020, 13, 4795. [Google Scholar] [CrossRef] [PubMed]
Sample | Ms (Am2/kg) | MR (Am2/kg) | Hc (kA/m) |
---|---|---|---|
Unaged SR-MRE 30 wt% | 57.3 ± 0.2 | 0.11 ± 0.002 | 9.78 ± 0.08 |
Aged SR-MRE 30 wt% | 60.7 ± 0.3 | 0.12 ± 0.001 | 9.87 ± 0.04 |
Unaged SR-MRE 60 wt% | 110.0 ± 0.5 | 0.13 ± 0.001 | 5.52 ± 0.01 |
Aged SR-MRE 60 wt% | 114.6 ± 0.8 | 0.15 ± 0.002 | 5.64 ± 0.01 |
Applied Current (A) | Magnetic Flux Density (T) |
---|---|
0 | 0.00 |
1 | 0.19 |
2 | 0.39 |
3 | 0.58 |
4 | 0.73 |
5 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, S.A.A.; Mazlan, S.A.; Ubaidillah, U.; Mohamad, N.; Sedlacik, M.; Nordin, N.A.; Nazmi, N. Loss Factor Behavior of Thermally Aged Magnetorheological Elastomers. Materials 2021, 14, 4874. https://doi.org/10.3390/ma14174874
Aziz SAA, Mazlan SA, Ubaidillah U, Mohamad N, Sedlacik M, Nordin NA, Nazmi N. Loss Factor Behavior of Thermally Aged Magnetorheological Elastomers. Materials. 2021; 14(17):4874. https://doi.org/10.3390/ma14174874
Chicago/Turabian StyleAziz, Siti Aishah Abdul, Saiful Amri Mazlan, Ubaidillah Ubaidillah, Norzilawati Mohamad, Michal Sedlacik, Nur Azmah Nordin, and Nurhazimah Nazmi. 2021. "Loss Factor Behavior of Thermally Aged Magnetorheological Elastomers" Materials 14, no. 17: 4874. https://doi.org/10.3390/ma14174874
APA StyleAziz, S. A. A., Mazlan, S. A., Ubaidillah, U., Mohamad, N., Sedlacik, M., Nordin, N. A., & Nazmi, N. (2021). Loss Factor Behavior of Thermally Aged Magnetorheological Elastomers. Materials, 14(17), 4874. https://doi.org/10.3390/ma14174874