Fe–Doped TiO2–Carbonized Medium–Density Fiberboard for Photodegradation of Methylene Blue under Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and X-ray Diffraction of Fe-Doped TiO2
2.3. Preparation of Fe/TiO2–cMDF
2.4. UV/Vis-Diffuse Reflectance Spectroscopy of Fe/TiO2–cMDF
2.5. Evaluation for the Adsorption of MB Using Fe/TiO2–cMDF
2.6. Evaluation for the Photodegradation of MB
2.7. Elemental Distribution on the Surface of Fe/TiO2–cMDF
3. Results and Discussion
3.1. Crystallinity of Fe-Doped TiO2
3.2. Optical Bandgap Energy of Fe/TiO2–cMDF
3.3. Adsorption Characteristics of MB on Fe/TiO2–cMDF
3.4. Photodegradation Performance of Fe/TiO2–cMDF
3.4.1. Photodegradation Performance of Fe/TiO2–cMDF under Blue LED
3.4.2. Photodegradation Performance of Fe/TiO2–cMDF under Commercial LED Bulbs
3.5. Characteristics of Blue LED and Commercial LED Bulbs
3.6. TiO2-Treated and Metal-Doped TiO2-Treated Wood and Wood-Based Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kercher, A.K.; Nagle, D.C. Evaluation of carbonized medium-density fiberboard for electrical applications. Carbon 2002, 40, 1321–1330. [Google Scholar] [CrossRef]
- Park, S.B.; Lee, S.M.; Park, J.Y.; Lee, S.H. Manufacture of crack-free carbonized board from fiberboard. Mokchae Konghak 2009, 37, 293–299. [Google Scholar]
- Park, S.B.; Park, J.Y.; Lee, S.M.; Son, D.W.; Lee, H.Y.; Kang, Y.S.; Park, B.D.; Roh, J.K.; Kim, C.C.; Mun, S.P.; et al. Evaluation and improvement of VOCs on wood-based panels (Research report 08-20). Korea Forest Research Institute, 2008, Seoul. ISBN 978-89-8176-528-6.
- Mun, S.P.; Park, S.B. Preparation of the functionality enhanced carbonized medium density fiberboard by pretreatment of photocatalyst precursor, titanium tetraisopropoxide. In Proceedings of the Forest Products Society, 65th International Convention, Portland, OR, USA, 19–21 June 2011; Poster 7. p. 127. [Google Scholar]
- Shayegan, Z.; Lee, C.-S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Park, S.B.; Mun, S.P. One-step preparation of TiO2-carbonized medium-density fiberboard for volatile organic compound photodegradation. BioResources 2019, 14, 5533–5543. [Google Scholar] [CrossRef]
- Lee, M.; Park, S.B.; Mun, S.P. Synthesis of TiO2 via modified sol-gel method and its use in carbonized medium-density fiberboard for toluene decomposition. BioResources 2019, 14, 6516–6528. [Google Scholar] [CrossRef]
- Banerjee, S.; Pillai, S.C.; Falaras, P.; O’Shea, K.E.; Byrne, J.A.; Dionysiou, D.D. New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 2014, 5, 2543–2554. [Google Scholar] [CrossRef] [Green Version]
- Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J.-M. Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: Naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 1994, 10, 643–652. [Google Scholar] [CrossRef]
- Ali, T.; Tripathi, P.; Azam, A.; Raza, W.; Ahmed, A.S.; Ahmed, A.; Muneer, M. Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater. Res. Express 2017, 4, 015022. [Google Scholar] [CrossRef]
- Saroj, S.; Singh, L.; Ranjan, R.; Singh, S.V. Enhancement of photocatalytic activity and regeneration of Fe-doped TiO2 (TiO1–xFexO2) nanocrystalline particles synthesized using inexpensive TiO2 precursor. Res. Chem. Intermed. 2019, 45, 1883–1906. [Google Scholar] [CrossRef]
- Shayegan, Z.; Haghighat, F.; Lee, C.-S. Anatase/brookite biphasic surface fluorinated Fe–TiO2 photocatalysts to enhance photocatalytic removal of VOCs under visible and UV light. J. Clean. Prod. 2021, 287, 125462. [Google Scholar] [CrossRef]
- Lee, M.; Park, S.B.; Mun, S.P. One-step preparation of visible-light-responsive TiO2 with carbonized medium-density fiberboard for toluene degradation. Wood Sci. Technol. 2020, 54, 349–364. [Google Scholar] [CrossRef]
- Pe, J.A.; Mun, S.P.; Lee, M. TiO2-carbonized medium-density fiberboard for the photodegradation of methylene blue. Wood Sci. Technol. 2021, 55, 1109–1122. [Google Scholar] [CrossRef]
- Pe, J.A.; Mun, S.P.; Kim, J.P. TiO2-carbonized medium-density fiberboard for the photodegradation of methylene blue under UV LEDs. BioResources 2021. (under review). [Google Scholar]
- Reyes-Coronado, D.; Rodriguez-Gattorno, G.; Espinosa-Pesqueira, M.E.; Cab, C.; Coss, R.D.; Oskam, G. Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology 2008, 19, 145605. [Google Scholar] [CrossRef]
- Lee, M.; Jang, J.; Lee, S.M.; Park, S.B. Comparison of the radon absorption capacity of carbonized boards from different wood-based panels. BioResources 2017, 12, 6427–6433. [Google Scholar] [CrossRef] [Green Version]
- Doi, M.; Saka, S.; Miyafuji, H.; Goring, D.A.I. Development of carbonized TiO2-woody composites for environmental cleaning. Mater. Sci. Res. Int. 2000, 6, 15–21. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, X.; Yaun, D.; Wang, W.; Gao, L. Preparation and characterization of TiO2 based on wood templates. Sci. Rep. 2020, 10, 12444. [Google Scholar] [CrossRef]
- Sun, Q.; Lu, Y.; Tu, J.; Yang, D.; Cao, J.; Li, J. Bulky macroporous TiO2 photocatalyst with cellular structure via facile wood-template method. Int. J. Photoenergy 2013, 649540. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, S.; Stefanello, N.; Sulkovski, A.A.; Foletto, E.L. Preparation of TiO2-supported on MDF biochar for simultaneous removal of methylene blue by adsorption and photocatalysis. J. Chem. Technol. Biotechnol. 2019, 95, 2723–2729. [Google Scholar]
- He, Y.; Li, H.; Guo, X.; Zheng, R. Bleached wood supports for floatable, recyclable, and efficient three dimensional photocatalyst. Catalysts 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ren, D.; Wu, Z.; Xu, J.; Bao, Y.; He, S.; Chen, Y. Flame retardant and visible light-activated Fe-doped TiO2 thin films anchored to wood surfaces for the photocatalytic degradation of gaseous formaldehyde. J. Colloid. Interface Sci. 2018, 530, 78–87. [Google Scholar] [CrossRef]
- Gao, L.; Gan, W.; Xiao, S.; Zhan, X.; Li, J. Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO2 and silver nanoparticle films on wood substrates. RSC Adv. 2015, 5, 52985–52992. [Google Scholar] [CrossRef]
- Giampiccolo, A.; Ansell, M.P.; Tobaldi, D.M.; Ball, R.J. Synthesis of Co-TiO2 nanostructured photocatalytic coatings for MDF substrates. Green Mater. 2016, 4, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Gan, W.; Qiu, Z.; Zhan, X.; Qiang, T.; Li, J. Preparation of heterostructured WO3/TiO2 catalysts from wood fibers and its versatile photodegradation abilities. Sci. Rep. 2017, 7, 1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasr, M.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. Recent progress on titanium dioxide nanomaterials for photocatalytic applications. ChemSusChem 2018, 11, 3023–3047. [Google Scholar] [CrossRef] [PubMed]
Daylight | Dark | Difference | ||
---|---|---|---|---|
Cycle | k1 (×10−3/h) | k1 (×10−3/h) | ∆ (×10−3/h) | |
Adsorption | 1 | 12.9 | 8.5 | 4.4 |
2 | 6.7 | 4.4 | 2.3 | |
3 | 3.0 | 2.6 | 0.4 |
Cycle | k2 (×10−3/ppm∙h) * | t99 (h) | t99 (d) | |
---|---|---|---|---|
Photodegradation | 1 | 10.7 | 96 | 4.0 |
2 | 3.9 | 270 | 11.25 | |
3 | 2.6 | 414 | 17.25 | |
4 | 2.6 | 480 | 20.0 | |
5 | 2.1 | 672 | 28.0 |
Element | Atomic Percentage | |
---|---|---|
Untreated | After Photodegradation | |
C | 42.97 ± 3.74 | 54.22 ± 4.95 |
O | 39.46 ± 2.45 | 34.30 ± 2.93 |
Ti | 16.85 ± 1.01 | 11.32 ± 3.03 |
Fe | 0.02 ± 0.01 | 0.01 ± 0.01 |
8 W LED | 12 W LED | ||||
---|---|---|---|---|---|
Cycle | k1 (× 10−3/h) | t99, h (days) | k1 (× 10−3/h) | t99, h (days) | |
Photodegradation | 1 | 20.5 | 120 (5.0) | 49.9 | 48 (2.0) |
2 | 13.9 | 162 (6.75) | 33.7 | 72 (3.0) | |
3 | 13.9 | 174 (7.25) | 29.5 | 84 (3.5) | |
4 | 12.6 | 186 (7.75) | 29.9 | 84 (3.5) | |
5 | 12.4 | 192 (8.0) | 28.0 | 96 (4.0) |
k (× 10−3/h) for 8 W | k (× 10−3/h) for 12 W | |||||
---|---|---|---|---|---|---|
Cycle | k1 | k1, Dark | k1, Corrected | k1 | k1, Dark | k1, Corrected |
1 | 20.5 | 8.5 | 12.0 | 49.9 | 8.5 | 41.4 |
2 | 13.9 | 4.4 | 9.5 | 33.7 | 4.4 | 29.3 |
3 | 13.9 | 2.7 | 11.2 | 29.5 | 2.7 | 26.8 |
4 | 12.6 | - | 12.6 | 29.9 | - | 29.9 |
5 | 12.4 | - | 12.4 | 28.0 | - | 28.0 |
Element | Atomic Percentage | |
---|---|---|
Untreated | After Photodegradation | |
C | 42.97 ± 3.74 | 53.12 ± 7.04 |
O | 39.46 ± 2.45 | 32.61 ± 4.27 |
Ti | 16.85 ± 1.01 | 14.06 ± 3.11 |
Fe | 0.02 ± 0.01 | 0.02 ± 0.01 |
Composites | Removal | Efficiency | Light Source | Reference |
---|---|---|---|---|
TiO2-cMDF | Formaldehyde (g a) | 99%, 24 h | UV-A lamp | [6] |
Toluene (g) | 99%, 5 h | UV-A lamp | [6] | |
MB (aq b) | 99%, 348 h c | UV-C lamp UV-A LED | [14,15] | |
TiO2-woody composite | Formaldehyde (g) | 99%, 3 h | UV lamp | [18] |
TiO2-wood template | Formaldehyde (g) | 20%, 5 h | UV lamp | [19] |
TiO2-wood template | Rhodamine B (aq) | 90%, 3 h | UV lamp | [20] |
TiO2-MDF biochar | MB (aq) | 86%, 3 h | UV lamp | [21] |
TiO2-bleached wood | MB (aq) | 99%, 7 h | UV sunlight | [22] |
Fe/TiO2-wood | Formaldehyde (g) | 93%, 5 h | Visible lamp | [23] |
Ag/TiO2-wood substrate | Formaldehyde (g) | 92%, 10 h | Visible LED | [24] |
Co/TiO2-MDF | MB (aq) | 80%, <1 h | UV-A lamp White/Green lamp | [25] |
WO3/TiO2 -wood fiber | MB (aq) Rhodamine B (aq) | 97%, <1 h | UV-A lamp | [26] |
Fe/TiO2-cMDF | Toluene (g) | 99%, 15 h | Fluorescent lamp | [13] |
MB (aq) | 93%, 48 h | Blue LED LED bulbs | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pe, J.A., III; Mun, S.-P.; Lee, M. Fe–Doped TiO2–Carbonized Medium–Density Fiberboard for Photodegradation of Methylene Blue under Visible Light. Materials 2021, 14, 4888. https://doi.org/10.3390/ma14174888
Pe JA III, Mun S-P, Lee M. Fe–Doped TiO2–Carbonized Medium–Density Fiberboard for Photodegradation of Methylene Blue under Visible Light. Materials. 2021; 14(17):4888. https://doi.org/10.3390/ma14174888
Chicago/Turabian StylePe, Justin Alfred, III, Sung-Phil Mun, and Min Lee. 2021. "Fe–Doped TiO2–Carbonized Medium–Density Fiberboard for Photodegradation of Methylene Blue under Visible Light" Materials 14, no. 17: 4888. https://doi.org/10.3390/ma14174888
APA StylePe, J. A., III, Mun, S. -P., & Lee, M. (2021). Fe–Doped TiO2–Carbonized Medium–Density Fiberboard for Photodegradation of Methylene Blue under Visible Light. Materials, 14(17), 4888. https://doi.org/10.3390/ma14174888