Response and Deterioration Mechanism of Bitumen under Acid Rain Erosion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Materials Preparation
2.1.1. Bitumen
2.1.2. Simulated Acid Rain
2.1.3. Erosion Process
2.1.4. Abbreviations Used to Represent the Bitumen Samples
2.2. Test Methods
2.2.1. The Hydrogen Ions Analysis
2.2.2. Scanning Electron Microscopy (SEM) Analysis
2.2.3. Physical Properties
2.2.4. Attenuated Total Reflectance (ATR) Fourier Transform Infrared Radiation (FTIR) Spectroscopy Analysis
2.2.5. Rheological Behaviour Analysis
3. Results and Discussion
3.1. The Hydrogen Ions of Simulated Acid Rain
3.2. Morphology of the Bitumen
3.3. The Physical Properties of the Bitumen
3.4. Chemical Structure of the Bitumen
3.5. The Rheological Properties of the Bitumen
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, D.-Y.; Xu, Y.-G.; Peng, P.; Zhang, H.-H.; Lan, J.-B. Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: Comparison with precipitation in other major Chinese cities. Environ. Pollut. 2009, 157, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, X.; Meng, M.; Zhai, L.; Zhang, B.; Jia, Z.; Gu, Z.; Liu, Q.; Zhang, Y.; Zhang, J. The use of Biolog Eco microplates to compare the effects of sulfuric and nitric acid rain on the metabolic functions of soil microbial communities in a subtropical plantation within the Yangtze River Delta region. Catena 2020, 198, 105039. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhang, Y.; Wang, Y.; Pei, C. Response of soil chemical properties and enzyme activity of four species in the Three Gorges Reservoir area to simulated acid rain. Ecotoxicol. Environ. Saf. 2021, 208, 111457. [Google Scholar] [CrossRef] [PubMed]
- Keresztesi, A.; Birsan, M.V.; Nita, I.A.; Bodor, Z.; Szep, R. Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000–2017. Environ. Sci. Eur. 2019, 31, 50. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.H.; Li, Y.R.; Ran, Y.Z.; Yang, K.; Qu, F.L.; Wang, P. Deterioration mechanism of CA mortar due to simulated acid rain. Constr. Build. Mater. 2018, 168, 1008–1015. [Google Scholar] [CrossRef]
- Xue, L.; Pun, K.L.; Li, G.; You, S.Z. Accelerated Damage Testing Method for Evaluating the Service Performance of Asphalt Pavement Affected by Acid Rain. In Proceedings of the Fourth Geo-China International Conference, Shandong, China, 25–27 July 2016. [Google Scholar]
- Zhang, X.M.; Pang, L.; Wu, S.P.; Zhang, G.F. Effect of different media aqueous solution on road performance of asphalt mixtures. Mater. Sci. Forum. 2018, 913, 1070–1075. [Google Scholar] [CrossRef]
- Lu, C.F.; Zhou, Q.S.; Wang, W.; Wei, S.H.; Wang, C. Freeze-thaw resistance of recycled aggregate concrete damaged by simulated acid rain. J. Clean. Prod. 2021, 280, 124396. [Google Scholar] [CrossRef]
- Shu, B.; Wu, S.; Dong, L.; Norambuena-Contreras, J.; Li, Y.; Li, C.; Yang, X.; Liu, Q.; Wang, Q.; Wang, F.; et al. Self-healing capability of asphalt mixture containing polymeric composite fibers under acid and saline-alkali water solutions. J. Clean. Prod. 2020, 268, 122387. [Google Scholar] [CrossRef]
- Lu, C.F.; Wang, W.; Zhou, Q.S.; Wei, S.H.; Wang, C. Mechanical behavior degradation of recycled aggregate concrete after simulated acid rain spraying. J. Clean. Prod. 2020, 262, 121237. [Google Scholar] [CrossRef]
- Mehrara, A.; Khodaii, A.; Yu, J. A review of state of the art on stripping phenomenon in asphalt concrete. Constr. Build. Mater. 2013, 38, 423–442. [Google Scholar] [CrossRef]
- Soleymani, H.R.; Ismail, M.E. Comparing corrosion measurement methods to assess the corrosion activity of laboratory OPC and HPC concrete specimens. Cem. Concr. Res. 2004, 34, 2037–2044. [Google Scholar] [CrossRef]
- Gerengi, H.; Kocak, Y.; Jazdzewska, A.; Kurtay, M.; Durgun, H. Electrochemical investigations on the corrosion behaviour of reinforcing steel in diatomite- and zeolite-containing concrete exposed to sulphuric acid. Constr. Build. Mater. 2013, 49, 471–477. [Google Scholar] [CrossRef]
- Feng, X.-J.; Chen, A.-D.; Wang, X.-P.; Xiong, X. Research on Technical Performance and Corrosion Mechanism of Asphalt Corroded by Acid Rain. Highway 2017, 4, 223–228. [Google Scholar]
- Pang, L.; Zhang, X.M.; Wu, S.; Ye, Y.; Li, Y. Influence of Water Solute Exposure on the Chemical Evolution and Rheological Properties of Asphalt. Materials 2018, 11, 983. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, L.; Pawlik, M. Influence of humic acids on oil sand processing. Part I: Detection and quantification of humic acids in oil sand ores and their effect on bitumen wettability. Int. J. Miner. Process. 2014, 126, 117–125. [Google Scholar] [CrossRef]
- Qian, G.; Yu, H.; Jin, D.; Bai, X.; Gong, X. Different water environment coupled with ultraviolet radiation on ageing of asphalt binder. Road Mater. Pavement Des. 2020. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Nie, S.; Wu, S.; Liu, Q.; Li, C.; Shu, B.; Li, C.; Song, W.; Zou, Y.; et al. Negative impacts of environmental factors (UV radiation, water and different solutions) on bitumen and its mechanism. Constr. Build. Mater. 2020, 265, 120288. [Google Scholar] [CrossRef]
- Wei, H.; Bai, X.; Qian, G.; Wang, F.; Li, Z.; Jin, J.; Zhang, Y. Aging Mechanism and Properties of SBS Modified Bitumen under Complex Environmental Conditions. Materials 2019, 12, 1189. [Google Scholar] [CrossRef] [Green Version]
- European Standard: NS-EN 12607-2:2014 Bitumen and Bituminous Binders–Determination of the Resistance to Hardening under Influence of Heat and Air–Part 2:TFOT Method; European Committee for Standardization: Brussels, Belgium, 2014.
- European Standard: NS-EN 1426:2015 Bitumen and Bituminous Binders–Determination of Needle Penetration; European Committee for Standardization: Brussels, Belgium, 2015.
- European Standard: NS–EN 1427:2015 Bitumen and Bituminous Binders–Determination of Softening Temperature–Ring and Ball Method; European Committee for Standardization: Brussels, Belgium, 2015.
- European Standard: NS–EN 13702:2018 Bitumen and Bituminous Binders–Determination of Dynamic Viscosity of Bitumen and Bituminous Binders by Cone and Plate Method; European Committee for Standardization: Brussels, Belgium, 2018.
- Dong, R.; Zhao, M.; Xia, W.; Yi, X.; Dai, P.; Tang, N. Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature. Waste Manag. 2018, 79, 516–525. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Hoff, I. The mutual effect and reaction mechanism of bitumen and de-icing salt solution. Constr. Build. Mater. 2021, 302, 124213. [Google Scholar] [CrossRef]
- Jelle, B.P.; Nilsen, T.N. Comparison of accelerated climate ageing methods of polymer building materials by attenuated total reflectance Fourier transform infrared radiation spectroscopy. Constr. Build. Mater. 2011, 25, 2122–2132. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Tian, J.; Liu, Z.; Lu, Q.; Zhong, K.; Yang, X. Rapid determination of styrene-butadiene-styrene (SBS) content in modified asphalt based on Fourier transform infrared (FTIR) spectrometer and linear regression analysis. Measurement 2020, 151, 107204. [Google Scholar] [CrossRef]
- European Standard: NS–EN 14770:2012. Bitumen and Bituminous Binders–Determination of Complex Shear Modulus and Phase Angle–Dynamic Shear Rheometer; European Committee for Standardization: Brussels, Belgium, 2012.
- Zhang, X.; Hoff, I. Comparative Study of Thermal-Oxidative Aging and Salt Solution Aging on Bitumen Performance. Materials 2021, 14, 1174. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Cai, F.; Yao, D.; Li, X. Aging properties of ultraviolet absorber/SBS modified bitumen based on FTIR analysis. Constr. Build. Mater. 2021, 273, 121713. [Google Scholar] [CrossRef]
- Yan, C.; Huang, W.; Ma, J.M.; Xu, J.; Lv, Q.; Lin, P. Characterizing the SBS polymer degradation within high content polymer modified asphalt using ATR-FTIR. Constr. Build. Mater. 2020, 233, 117708. [Google Scholar] [CrossRef]
- Hou, X.; Lv, S.; Chen, Z.; Xiao, F. Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement 2018, 121, 304–316. [Google Scholar] [CrossRef]
Properties | Unit | Neat Bitumen | Aged Bitumen | Test Standard | |
---|---|---|---|---|---|
penetration (25 °C) | 0.1 mm | 71 | 54 | EN 1426:2015 [22] | |
softening point | °C | 48.4 | 53.8 | EN 1427:2015 [23] | |
viscosity (60 °C) | Pa∙s | 191 | 303 | EN 13702:2018 [24] | |
absorbance(FTIR) | S=O | 1030 cm−1 | 0.054 | 0.057 | FTIR analysis [25] |
C=O | 1700 cm−1 | 0.019 | 0.022 | ||
C-O | 1301 cm−1 | 0.055 | 0.055 |
Mode | Low-Temperature Creep | High-Temperature Creep |
---|---|---|
sweep frequency (rad/s) | 10 | 10 |
temperature range (°C) | 5–30 | 30–80 |
temperature interval (°C) | 5 | 10 |
diameter of the plate (mm) | 8 | 25 |
sample thickness (mm) | 2 | 1 |
Condition | Acid-UT-7D | Acid-AT-7D | Acid-UT-28D | Acid-AT-28D | Acid-UT-90D | Acid-AT-90D |
---|---|---|---|---|---|---|
volume loss (mL) | 0.02 | 0.02 | 3.67 | 2.35 | 22.36 | 11.50 |
theoretical pH | 4.00 | 4.00 | 3.99 | 3.99 | 3.93 | 3.97 |
Peak Position | Functional Group | Description | Indication |
---|---|---|---|
1030 cm−1 | S=O | Sulfoxide group | Oxidation |
1700 cm−1 | C=O | Carbonyl group | |
1301 cm−1 | C-O | Acetate ester/Carbonyl acid | Dissolution |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Hoff, I.; Saba, R.G. Response and Deterioration Mechanism of Bitumen under Acid Rain Erosion. Materials 2021, 14, 4911. https://doi.org/10.3390/ma14174911
Zhang X, Hoff I, Saba RG. Response and Deterioration Mechanism of Bitumen under Acid Rain Erosion. Materials. 2021; 14(17):4911. https://doi.org/10.3390/ma14174911
Chicago/Turabian StyleZhang, Xuemei, Inge Hoff, and Rabbira Garba Saba. 2021. "Response and Deterioration Mechanism of Bitumen under Acid Rain Erosion" Materials 14, no. 17: 4911. https://doi.org/10.3390/ma14174911
APA StyleZhang, X., Hoff, I., & Saba, R. G. (2021). Response and Deterioration Mechanism of Bitumen under Acid Rain Erosion. Materials, 14(17), 4911. https://doi.org/10.3390/ma14174911