Acid Solution Processed VO2-Based Composite Films with Enhanced Thermochromic Properties for Smart Windows
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structures of the Films before and after Acid Solution Treatment
3.2. Thermochromic Properties of VO2 Based Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Y.; Luo, H.; Zhang, Z.; Kang, L.; Chen, Z.; Du, J.; Minoru, K.; Cao, C. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing. Nano Energy 2012, 1, 221–246. [Google Scholar] [CrossRef]
- Wu, X.; Wu, Z.; Zhang, H.; Niu, R.; He, Q.; Ji, C.; Wang, J.; Jiang, Y. Enhancement of VO2 thermochromic properties by Si doping. Surf. Coat. Technol. 2015, 276, 248–253. [Google Scholar] [CrossRef]
- Batista, C.; Ribeiro, R.; Carneiro, J.; Teixeira, V. DC sputtered W-doped VO2 thermochromic thin films for smart windows with active solar control. J. Nanosci. Nanotechnol. 2009, 9, 4220–4226. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Gao, Y.; Luo, H.; Zhang, C.; Jin, D.; Zhang, Z. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Appl. Mater. Interfaces 2011, 3, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, M.; Kong, L.; Li, Y.; Jiang, X.; Yu, A. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties. Prog. Mater. Sci. 2016, 81, 1–54. [Google Scholar] [CrossRef]
- Zhuang, B.; Dai, Z.; Pang, S.; Xu, H.; Sun, L.; Ma, F. 3D Ordered Macroporous VO2 Thin Films with an Efficient Thermochromic Modulation Capability for Advanced Smart Windows. Adv. Opt. Mater. 2019, 7, 1900600. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, J.; Ma, H.; Chen, L.; Li, R.; Jin, P. VO2/Nickel-bromine-ionic liquid composite film for thermochromic application. Sol. Energy Mater. Sol. Cells 2019, 196, 124–130. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, X.; Zhu, J.; Li, R.; Yao, H.; Cao, X.; Ji, S.; Jin, P. High Performance and Enhanced Durability of Thermochromic Films Using VO2@ZnO Core–Shell Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 27784–27791. [Google Scholar] [CrossRef]
- Xu, F.; Cao, X.; Shao, Z.; Sun, G.; Long, S.; Chang, T.; Luo, H.; Jin, P. Highly Enhanced Thermochromic Performance of VO2 Film Using “Movable” Antireflective Coatings. ACS Appl. Mater. Interfaces 2019, 11, 4712–4718. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, J.; Chae, K.; Park, J.; Lee, H. Annealing effect on phase transition and thermochromic properties of VO2 thin films. Superlattices Microst. 2020, 137, 106335. [Google Scholar] [CrossRef]
- Shigesato, Y.; Enomoto, M.; Odaka, H. Thermochromic VO2Films Deposited by RF Magnetron Sputtering Using V2O3 or V2O5 Targets. Jpn. J. Appl. Phys. 2000, 39, 6016–6024. [Google Scholar] [CrossRef]
- Dou, S.; Wang, Y.; Zhang, X.; Tian, Y.; Hou, X.; Wang, J.; Li, X.; Zhao, J.; Li, Y. Facile preparation of double-sided VO2 (M) films with micro-structure and enhanced thermochromic performances. Sol. Energy Mater. Sol. Cells 2017, 160, 164–173. [Google Scholar] [CrossRef]
- Kang, J.; Liu, J.; Shi, F.; Dong, Y.; Jiang, S. The thermochromic characteristics of Zn-doped VO2 that were prepared by the hydrothermal and post-annealing process and their polyurethane composite films. Ceram. Int. 2021, 47, 15631–15638. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, D.S.; Kang, S.H.; Yang, W.S.; Nahm, S.; Han, S.H.; Kim, T. VO2/WO3-Based Hybrid Smart Windows with Thermochromic and Electrochromic Properties. ACS Sustain. Chem. Eng. 2019, 7, 7111–7117. [Google Scholar] [CrossRef]
- Jiang, M.; Bao, S.; Cao, X.; Li, Y.; Li, S.; Zhou, H.; Luo, H.; Jin, P. Improved luminous transmittance and diminished yellow color in VO2 energy efficient smart thin films by Zn doping. Ceram. Int. 2014, 40, 6331–6334. [Google Scholar] [CrossRef]
- Wu, S.; Tian, S.; Liu, B.; Tao, H.; Zhao, X.; Palgrave, R.; Sankar, G.; Parkin, I. Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties. Sol. Energy Mater. Sol. Cells 2018, 176, 427–434. [Google Scholar] [CrossRef]
- Long, S.; Cao, X.; Wang, Y.; Chang, T.; Li, N.; Jin, L.; Ma, L.; Xu, F.; Sun, G.; Jin, P. Karst landform-like VO2 single layer solution: Controllable morphology and excellent optical performance for smart glazing applications. Sol. Energy Mat. Sol. C 2020, 209, 110449. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, Q.; Wang, T.; Wang, S.; Li, N.; Lin, G.; Liu, X.; Dai, Z.; Yan, J.; Yin, J.; et al. Cephalopod-inspired versatile design based on plasmonic VO2 nanoparticle for energy-efficient mechano-thermochromic windows. Nano Energy 2020, 73, 104785. [Google Scholar] [CrossRef]
- Li, B.; Tian, S.; Tao, H.; Zhao, X. Tungsten doped M-phase VO2 mesoporous nanocrystals with enhanced comprehensive thermochromic properties for smart windows. Ceram. Int. 2019, 45, 4342–4350. [Google Scholar] [CrossRef]
- Zou, Z.; Zhang, Z.; Xu, J.; Yu, Z.; Cheng, M.; Xiong, R.; Lu, Z.; Liu, Y.; Shi, J. Thermochromic, threshold switching, and optical properties of Cr-doped VO2 thin films. J. Alloy. Compd. 2019, 806, 310–315. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Tian, S.; Liu, B.; Yang, X.; Yu, Z.; Zhao, X. VO2-ZnO composite films with enhanced thermochromic properties for smart windows. Ceram. Int. 2020, 46, 2758–2763. [Google Scholar] [CrossRef]
- Li, B.; Yao, J.; Tian, S.; Fang, Z.; Wu, S.; Liu, B.; Gong, X.; Tao, H.; Zhao, X. A facile one-step annealing route to prepare thermochromic W doped VO2 (M) particles for smart windows. Ceram. Int. 2020, 46, 18274–18280. [Google Scholar] [CrossRef]
- Chen, H.-W.; Li, C.-I.; Ma, C.-H.; Chu, Y.-H.; Liu, H.-L. Strain engineering of optical properties in transparent VO2/muscovite heterostructures. Phys. Chem. Chem. Phys. 2021, 23, 8908–8915. [Google Scholar] [CrossRef]
- D’Elia, A.; Grazioli, C.; Cossaro, A.; Li, B.; Zou, C.; Rezvani, S.; Pinto, N.; Marcelli, A.; Coreno, M. Strain mediated Filling Control nature of the Metal-Insulator Transition of VO2 and electron correlation effects in nanostructured films. Appl. Surf. Sci. 2021, 540, 148341. [Google Scholar] [CrossRef]
- Nazari, M.; Zhao, Y.; Kuryatkov, V.V.; Fan, Z.Y.; Bernussi, A.A.; Holtz, M. Temperature dependence of the optical properties of VO2 deposited on sapphire with different orientations. Phys. Rev. B 2013, 87, 035142. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.; Wen, X.; Zhao, D.; Che, R.; Xiong, Q.; Long, Y. Controllable Fabrication of Two-Dimensional Patterned VO2 Nanoparticle, Nanodome, and Nanonet Arrays with Tunable Temperature-Dependent Localized Surface Plasmon Resonance. ACS Nano 2018, 11, 7542–7551. [Google Scholar] [CrossRef]
- Sol, C.; Portnoi, M.; Li, T.; Gurunatha, K.; Schläfer, J.; Guldin, S.; Parkin, I.; Papakonstantinou, I. High-performance planar thin film thermochromic window via dynamic optical impedance matching. ACS Appl. Mater. Interfaces 2020, 12, 8140–8145. [Google Scholar] [CrossRef]
- Batista, C.; Ribeiro, R.M.; Teixeira, V. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows. Nanoscale Res. Lett. 2011, 6, 301. [Google Scholar] [CrossRef] [Green Version]
- Riapanitra, A.; Asakura, Y.; Yin, S. One-step hydrothermal synthesis and thermochromic properties of chlorine-doped VO2(M) for smart window application. Funct. Mater. Lett. 2020, 13, 1951008. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Wang, Z.; Tian, S.; Liu, B.; Zhao, X.; Li, N.; Sankar, G.; Wang, S. Facile Preparation of Zn2V2O7–VO2 Composite Films with Enhanced Thermochromic Properties for Smart Windows. ACS Appl. Electron. Mater. 2021, 3, 2224–2232. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, F.; Yao, J.; Zhu, T.; Xia, H.; Yang, G.; Liu, B.; Gao, Y. Facile synthesis, formation mechanism and thermochromic properties of W-doped VO2(M) nanoparticles for smart window applications. J. Mater. Chem. C 2020, 8, 13396–13404. [Google Scholar] [CrossRef]
- Gonçalves, A.; Resende, J.; Marques, A.; Pinto, J.V.; Nunes, D.; Marie, A.; Pereira, L.; Martins, R.; Fortunato, E. Smart optically active VO2 nanostructured layers applied in roof-type ceramic tiles for energy efficiency. Sol. Energy Mater. Sol. Cells 2016, 150, 1–9. [Google Scholar] [CrossRef]
- Liang, J.; Guo, J.; Zhao, Y.; Su, T.; Zhang, Y. The effects of surface plasmon resonance coupling effect on the solar energy modulation under high transmittance of VO2 nanostructure. Sol. Energy Mat. Sol. C. 2019, 199, 1–7. [Google Scholar] [CrossRef]
- Wang, N.; Duchamp, M.; Dunin-Borkowski, R.; Liu, S.; Zeng, X.; Cao, X.; Long, Y. Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance. Langmuir 2016, 32, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Cao, X.; Luo, H.; Jin, P. Recent advances in VO2-based thermochromic composites for smart windows. J. Mater. Chem. C 2018, 6, 1903–1919. [Google Scholar] [CrossRef]
- Li, Y.; Ji, S.; Gao, Y.; Luo, H.; Kanehira, M. Core-shell VO2@TO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Sci. Rep. 2013, 3, 1370. [Google Scholar] [CrossRef]
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Miyazaki, H.; Yasui, I. Substrate bias effect on the fabrication of thermochromic VO2 films by reactive RF sputtering. J. Phys. D Appl. Phys. 2006, 39, 2220–2223. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Aperathitis, E.; Michail, G.; Kiriakidis, G.; Binas, V. Sputtered VO2 coatings on commercial glass substrates for smart glazing applications. Sol. Energy Mater. Sol. Cells 2021, 220, 110845. [Google Scholar] [CrossRef]
- Long, S.; Cao, X.; Huang, R.; Xu, F.; Li, N.; Huang, A.; Sun, G.; Bao, S.; Luo, H.; Jin, P. Self-Template Synthesis of Nanoporous VO2-Based Films: Localized Surface Plasmon Resonance and Enhanced Optical Performance for Solar Glazing Application. ACS Appl. Mater. Interfaces 2019, 11, 22692–22702. [Google Scholar] [CrossRef]
Element | XPS Results (at. %) | EDS Results (at. %) | ||
---|---|---|---|---|
S1 | S2 | S1 | S2 | |
V | 30.5 | 35.4 | 19.6 | 7.09 |
Zn | 11.7 | 0.5 | 14.54 | 0.03 |
O | 57.8 | 64.1 | - | - |
Samples | Sputtering Power of ZnO Target (W) | Before Acid Solution Process V/Zn | Zn2V2O7-VO2 Composite Films | Porous VO2 Films | ||||
---|---|---|---|---|---|---|---|---|
Grain Size (nm) | Tlum (%) | ΔTsol (%) | Grain Size (nm) | Tlum (%) | ΔTsol (%) | |||
a | 60 | 6.1 | 20.3 | 38.9 | 12.5 | 18.6 | 41.0 | 10.0 |
b | 90 | 2.3 | 23.4 | 38.1 | 13.0 | 19.0 | 56.4 | 9.2 |
S | 120 | 1.4 | 28.1 | 51.8 | 13.7 | 19.5 | 78.0 | 9.9 |
c | 150 | 1.7 | 25.6 | 45.0 | 14.0 | 17.5 | 72.1 | 10.7 |
Thermochromic Properties | Reference | ||
---|---|---|---|
System | Tlum (%) | ΔTsol (%) | |
Si doped VO2 | - | 9.2 | Wu et al. [2] |
Ni-Br-IL composite film | 65.9 | 27.0 | Chen et al. [7] |
Zn-doped VO2 | 41.3 | 15.3 | Kang et al. [13] |
Mesoporous VO2 based film | 56 | 12.9 | Wu et al. [16] |
two-dimensional nanostructure VO2 film | 61.3 | 11.9. | Long et al. [26] |
W-doped VO2 film | 61.7 | 11.7 | Zhang et al. [31] |
Terbium-doped VO2 film | 54.0 | 8.3 | Wang et al. [34] |
Porous VO2 film | 72.1 | 10.7 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, B.; Tian, S.; Liu, B.; Zhao, X.; Zhou, X.; Tang, G.; Pang, A. Acid Solution Processed VO2-Based Composite Films with Enhanced Thermochromic Properties for Smart Windows. Materials 2021, 14, 4927. https://doi.org/10.3390/ma14174927
Wang Z, Li B, Tian S, Liu B, Zhao X, Zhou X, Tang G, Pang A. Acid Solution Processed VO2-Based Composite Films with Enhanced Thermochromic Properties for Smart Windows. Materials. 2021; 14(17):4927. https://doi.org/10.3390/ma14174927
Chicago/Turabian StyleWang, Zhe, Bin Li, Shouqin Tian, Baoshun Liu, Xiujian Zhao, Xuedong Zhou, Gen Tang, and Aimin Pang. 2021. "Acid Solution Processed VO2-Based Composite Films with Enhanced Thermochromic Properties for Smart Windows" Materials 14, no. 17: 4927. https://doi.org/10.3390/ma14174927
APA StyleWang, Z., Li, B., Tian, S., Liu, B., Zhao, X., Zhou, X., Tang, G., & Pang, A. (2021). Acid Solution Processed VO2-Based Composite Films with Enhanced Thermochromic Properties for Smart Windows. Materials, 14(17), 4927. https://doi.org/10.3390/ma14174927