Squared Focal Intensity Distributions for Applications in Laser Material Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focal Beam-Shaping and Characterization
2.2. Material Processing Setup and Sample Preparation
3. Results and Discussion
3.1. Single-Spot Experiments
3.2. Laser Surface Structuring on the Nanoscale
- (1)
- As already demonstrated in [30,31], highly regular LIPSS can also be generated with conventional Gaussian beam profiles. However, the radial intensity dependence and the circular spot area require a larger overlap of the laser pulses in both x- and y-directions to realize an almost homogeneous energy deposition. The optimal process parameters for Gaussian beam processing were derived in [19] to be v = 0.67 m/s, Δx = 6 µm, Eimp = 2.6 µJ, F = 1.15 J/cm2 at frep = 100 kHz and 2wf = 24 µm. These values result in a processing rate of about 32 s/cm2 and in a laser pulse number Neff_2D = (πwf2·frep)/(v⋅Δx) ~11.3, that effectively hit the focal spot area [28].
- (2)
- The main difference between the ideal squared top-hat and the Gaussian profile results from the relative movement during scanning. Figure 7a illustrates that for the Gaussian profile at a certain position y at the surface, every single pulse of the total required number (Neff_2D) contributes to structuring with different fluence values. Consequently, the specific fluence of some of the individual pulses can be significantly smaller than the ablation and LIPSS formation threshold of the material.
- (3)
- In the case of the top-hat profile (z = 0) with its square shape, the slightly larger beam diameter (here given by the beam width in x- and y-directions) and steeper flanks, LIPSS structures with almost equal properties can be achieved. Nevertheless, the structuring can be performed with larger scanning speed (v = 1 m/s) and line separation (Δx = 10 µm). As described above, the pulse energy must be increased slightly for this to exceed the required LIPSS formation threshold. The optimum parameters, however, result in Neff_2D = 9 and a processing rate of about 14 s/cm2, which is more than a factor of 2 faster than structuring with the conventional Gaussian beam.
- (4)
- The accumulated fluence of the ideal top-hat profile with Ftot = Neff_2D·F = 3.51 J/cm2 is smaller than for the Gaussian intensity distribution (Ftot = 6.47 J/cm2), since during structuring with the top-hat, each single pulse contributes equally to Ftot (Figure 7b).
3.3. Surface Micro-Structuring
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malinauskas, M.; Zukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light-Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef] [Green Version]
- Raciukaitis, G.; Stankevicius, E.; Gecys, P.; Gedvilas, M.; Bischoff, C.; Jager, E.; Umhofer, U.; Volklein, F. Laser processing by using diffractive optical laser beam shaping technique. J. Laser Micro Nanoen. 2011, 6, 37–43. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. A tutorial on optics for ultrafast laser materials processing: Basic microprocessing system to beam shaping and advanced focusing methods. Adv. Opt. Technol. 2012, 1, 353. [Google Scholar] [CrossRef]
- Allegre, O.J.; Jin, Y.; Perrie, W.; Ouyang, J.; Fearon, E.; Edwardson, S.P.; Dearden, G. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt. Express 2013, 21, 21198–21207. [Google Scholar] [CrossRef]
- Skoulas, E.; Manousaki, A.; Fotakis, C.; Stratakis, E. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci. Rep. 2017, 7, 45114. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, J.; Perrie, W.; Allegre, O.J.; Heil, T.; Jin, Y.; Fearon, E.; Eckford, D.; Edwardson, S.P.; Dearden, G. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt. Express 2015, 23, 12562–12572. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.A.; Kunz, C.; Gräf, S. Bio-inspired functional surfaces based on laser-induced periodic surface structures. Materials 2016, 9, 476. [Google Scholar] [CrossRef]
- Gräf, S. Formation of laser-induced periodic surface structures on different materials: Fundamentals, properties and applications. Adv. Opt. Technol. 2020, 9, 11–39. [Google Scholar] [CrossRef]
- Stratakis, E.; Bonse, J.; Heitz, J.; Siegel, J.; Tsibidis, G.; Skoulas, E.; Papadopoulos, A.; Mimidis, A.; Joel, A.-C.; Comanns, P. Laser engineering of biomimetic surfaces. Mater. Sci. Eng. R Rep. 2020, 141, 100562. [Google Scholar] [CrossRef]
- Dickey, F.M. Theory and techniques for laser beam shaping. Int. Congr. Appl. Lasers Electro.-Opt. 2001, 2001, 1393–1402. [Google Scholar]
- Frieden, B.R. Lossless conversion of a plane laser wave to a plane wave of uniform irradiance. Appl. Opt. 1965, 4, 1400–1403. [Google Scholar] [CrossRef]
- Rhodes, P.W.; Shealy, D.L. Refractive optical systems for irradiance redistribution of collimated radiation—Their design and analysis. Appl. Opt. 1980, 19, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Hoffnagle, J.A.; Jefferson, C.M. Design and performance of a refractive optical system that converts a gaussian to a flattop beam. Appl. Opt. 2000, 39, 5488–5499. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, W.B.; Kastner, C.J. Beam profile shaping for laser radars that use detector arrays. Appl. Opt. 1982, 21, 345–356. [Google Scholar] [CrossRef]
- Bollanti, S.; Di Lazzaro, P.; Murra, D. More about the light beam shaping by the integration method. Eur. Phys. J.-Appl. Phys. 2004, 28, 179–186. [Google Scholar] [CrossRef]
- Häfner, T.; Strauss, J.; Roider, C.; Heberle, J.; Schmidt, M. Tailored laser beam shaping for efficient and accurate microstructuring. Appl. Phys. A Mater. Sci. Process. 2018, 124, 111. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Kuanga, Z.; Vilara, J.G.; Deardena, G.; Perriea, W.; Edwardson, S. Dynamic ultrafast laser beam shaping for material processing at the imaging plane using a spatial light modulator. In Proceedings of the 9th International Conference on Photonic Technologies LANE, Gurth, Germany, 19–22 September 2016. [Google Scholar]
- Jin, Y.; Allegre, O.J.; Perrie, W.; Abrams, K.; Ouyang, J.; Fearon, E.; Edwardson, S.P.; Dearden, G. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt. Express 2013, 21, 25333–25343. [Google Scholar] [CrossRef]
- Möhl, A.; Kaldun, S.; Kunz, C.; Müller, F.A.; Fuchs, U.; Gräf, S. Tailored focal beam shaping and its application in laser material processing. J. Laser Appl. 2019, 31, 042019. [Google Scholar] [CrossRef] [Green Version]
- Bonse, J.; Kirner, S.V.; Höhm, S.; Epperlein, N.; Spaltmann, D.; Rosenfeld, A.; Krüger, J. Applications of laser-induced periodic surface structures (lipss). Proc. SPIE 2017, 10092, 100920N. [Google Scholar]
- Sugioka, K.; Meunier, M.; Piqué, A. Laser Precision Microfabrication; Springer: Berlin, Germany, 2010. [Google Scholar]
- Cordingley, J.J. Method for Severing Integrated-Circuit Connection Paths by a Phase-Plate-Adjusted Laser Beam. U.S. Patent 5,300,756, 22 October 1991. [Google Scholar]
- Dickey, F.M. Laser Beam Shaping: Theory and Techniques, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Hopkins, H.H.; Yzuel, M.J. The computation of diffraction patterns in the presence of aberrations. Opt. Acta Int. J. Opt. 1970, 17, 157–182. [Google Scholar] [CrossRef]
- Liu, J.M. Simple technique for measurements of pulsed gaussian beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Bonse, J.; Krüger, J.; Höhm, S.; Rosenfeld, A. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 2012, 24, 042006. [Google Scholar] [CrossRef]
- Sipe, J.E.; Young, J.F.; Preston, J.S.; van Driel, H.M. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Bonse, J.; Gräf, S. Maxwell meets marangoni-a review of theories on laser-induced periodic surface structures. Laser Photon. Rev. 2020, 14, 2000215. [Google Scholar] [CrossRef]
- Kunz, C.; Engel, S.; Müller, F.A.; Gräf, S. Large-area fabrication of laser-induced periodic surface structures on fused silica using thin gold layers. Nanomaterials 2020, 10, 1187. [Google Scholar] [CrossRef]
- Gräf, S.; Kunz, C.; Undisz, A.; Wonneberger, R.; Rettenmayr, M.; Müller, F.A. Mechano-responsive colour change of laser-induced periodic surface structures. Appl. Surf. Sci. 2019, 471, 645–651. [Google Scholar] [CrossRef]
- Gnilitskyi, I.; Derrien, T.J.Y.; Levy, Y.; Bulgakova, N.M.; Mocek, T.; Orazi, L. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: Physical origin of regularity. Sci. Rep. 2017, 7, 8485. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.W.; Fox, T.; Grützmacher, P.G.; Suarez, S.; Mücklich, F. Applying ultrashort pulsed direct laser interference patterning for functional surfaces. Sci. Rep. 2020, 10, 3647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlutow, H.; Fuchs, U.; Müller, F.A.; Gräf, S. Squared Focal Intensity Distributions for Applications in Laser Material Processing. Materials 2021, 14, 4981. https://doi.org/10.3390/ma14174981
Schlutow H, Fuchs U, Müller FA, Gräf S. Squared Focal Intensity Distributions for Applications in Laser Material Processing. Materials. 2021; 14(17):4981. https://doi.org/10.3390/ma14174981
Chicago/Turabian StyleSchlutow, Henrike, Ulrike Fuchs, Frank A. Müller, and Stephan Gräf. 2021. "Squared Focal Intensity Distributions for Applications in Laser Material Processing" Materials 14, no. 17: 4981. https://doi.org/10.3390/ma14174981
APA StyleSchlutow, H., Fuchs, U., Müller, F. A., & Gräf, S. (2021). Squared Focal Intensity Distributions for Applications in Laser Material Processing. Materials, 14(17), 4981. https://doi.org/10.3390/ma14174981