Use of Ashes from Lignite Combustion as Fillers in Rubber Mixtures to Reduce VOC Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Rubber and Other Ingredients
2.1.2. Ash after Burning Brown Coal (BCA)
2.2. Preparation of Composites
3. Research Techniques
3.1. Researching Ashes
3.2. Making Mixtures
4. Results and Discussion
4.1. Characterization of BCA
4.2. Characterization of SBR/BCA Composites
4.2.1. Vulcanization Kinetics
4.2.2. Rheological Analysis
4.2.3. Cross-Linking Density
4.2.4. FTIR
4.2.5. Mechanical and Hardness Tests
4.2.6. Carbonyl Index
4.2.7. SEM Analysis
4.2.8. EDS Analysis
4.2.9. DSC & TGA Analysis
4.2.10. Testing Emission of VOCs from Vulcanizates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistics and Balances, Wayback Machine, 2013.
- Council of Europe. Parliamentary Assembly, Documents de Séance; Council of Europe, Parliamentary Assembly: Strasbourg, Germany, 2004; pp. 5–6. [Google Scholar]
- Council of Europe. Parliamentary, Documents: Working Papers, Ordinary Session (Fourth Part); Council of Europe: Strasbourg, France, 2004; Volume VI, pp. 253–259. [Google Scholar]
- Borenstein, S. Carbon-Emissions Culprit? Coal; The Seattle Times Company. 2007. Available online: http://seattletimes.nwsource.com/html/nationworld/2003732690_carbon03.html (accessed on 16 July 2021).
- US Environmental Protection Agency. Sulfur Dioxide. Available online: https://www.epa.gov/ (accessed on 16 July 2021).
- Szponder, D.; Trybalski, K. Określanie właściwości popiołów lotnych przy użyciu różnych metod i urządzeń badawczych. Górnictwo i Geoinżynieria 2009, 33, 287–298. [Google Scholar]
- Rajczyk, K.; Gąsior, D. Innowacyjny sposób wykorzystania niespalonych cząstek węgla zawartych w popiołach lotnych z węgla brunatnego. Pr. Inst. Ceram. i Mater. Bud. 2017, 10, 7–21. [Google Scholar]
- Esomba, S. The Book: Twenty-First Century’s Fuel Sufficiency Roadmap, Lulu. pp. 600–606. Available online: https://www.lulu.com/shop/steve-esomba-dr/shop/steve-esomba-dr/twenty-first-centurys-fuel-sufficiency-roadmap/paperback/product-19zzd294.html?page=1&pageSize=4 (accessed on 16 July 2021).
- Tkaczewska, E.; Mróz, R.; Łój, G. Coal-biomass fly ashes for cement production of CEM II/A-V 42.5R. Constr. Build. Mater 2012, 1, 633–639. [Google Scholar] [CrossRef]
- Formela, M.; Stryczek, S. Popioły fluidalne ze spalania węgla brunatnego jako dodatek do zaczynów uszczelniających wykorzystywanych podczas prac wypełniania pustek w górotworze. Zesz. Nauk. Inst. Gospod. Surowcami Miner. i Energią PAN 2017, 97, 117–134. [Google Scholar]
- Stępień, M.; Białecka, B. Inwentaryzacja innowacyjnych technologii odzysku odpadów energetycznych. Syst. Wspomagania w Inżynierii Produkcji. 2017, 6, 108–123. [Google Scholar]
- Faber, J.; Brodzik, K. Emisja LZO z tworzyw syntetycznych w komorze 1m3 - istotne źródła niepewności. Autobusy Tech. Eksploat. Syst. Transp. 2017, 18, 857–864. [Google Scholar]
- Zabiegała, B. Jakość powietrza wewnętrznego-Lotne związki organiczne jako wskaźnik jakości powietrza wewnętrznego. Monogr. Kom. Inżynierii Sr. PAN 2009, I, 303–315. [Google Scholar]
- Blackley, D.C. Polymer Latices: Science and Technology Volume 3: Applications of Latices; Springer-Science + Business Mesia: Berlin/Heidelberg, Germany, 2012; p. 242. [Google Scholar]
- Alves, J.O.; Zhuo, C.; Levendis, Y.A.; Tenório, J.A.S. Microstructural analysis of carbon nanomaterials produced from pyrolysis/combustion of Styrene-Butadiene-Rubber (SBR). Mater. Res. 2011, 14, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Sancaktar, E. Use of fly ash as eco-friendly filler in synthetic rubber for tire applications. J. Clean. Prod. 2018, 206, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Wysokiński, A.; Skład, S.; Kalembasa. Chemiczny popiołów z węgla brunatnego i kamiennego w aspekcie ich rolniczego zagospodarowania. Rocz. Glebozn. 2008, 2, 93–97. [Google Scholar]
- Gawlicki, M. Ostrowski, M. Aktywność wapiennych popiołów lotnych z Elektrowni ‘Bełchatów’ jako składnika cementów powszechnego użytku. Pr. Inst. Ceram. i Mater. Bud. 2012, 5, 66–75. [Google Scholar]
- Hycnar, E.; Jończyk, M.W.; Ratajczak, T. Popioły lotne i iły beidellitowe z Bełchatowa jako składniki mieszanin samozestalających się. Zesz. Nauk. Inst. Gospod. Surowcami Miner. i Energią Pol. Akad. Nauk. 2017, 100, 37–48. [Google Scholar]
- Garcia, A.B.; Cameán, I. Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: Performance as anodes in lithium-ion batteries. J. Power Sources 2011, 196, 4816–4820. [Google Scholar]
- Zapotoczna-Sytek, G.; Michalik, A. Badania nad zastosowaniem popiołów lotnych ze spalania węgli w kotłach fluidalnych do wytwarzania autoklawizowanego betonu komórkowego. Pr. Inst. Ceram. i Mater. Bud. 2010, 3, 123–140. [Google Scholar]
- Gum. Determination of Hardness according to the Shore Method; Polish Accreditation Center: Warsaw, Poland, 2014. [Google Scholar]
- Liquid Resistance, Weight Method; Polish Accreditation Center: Warsaw, Poland, 2014.
- Lew, A.; Kardelky, C.; Haupt, P. Theory and eksperymentach Rubber Chemistry and Technology. 2003; 533–547. [Google Scholar]
- Przepiórkowska, A.; Prochon, M.; Zaborski, M.; Żakowska, Z.; Piotrowska, M. Biodegradable protein-containing elastomeric vulcanizates. Rubber Chem. Technol. 2005, 78, 868–878. [Google Scholar] [CrossRef]
- Polgar, L.; Kingma, A.; Roelfs, M.; van Essen, M.; van Duin, M.; Picchioni, F. Kinetics of cross-linking and de-cross-linking of EPM rubber with thermoreversible Diels-Alder chemistry. Eur. Polym. J. 2017, 90, 150–161. [Google Scholar] [CrossRef]
- Baeta, D.A.; Zattera, J.A.; Oliveira, M.; Oliveira, P.J. The use of styrene-butadiene rubber waste as a potential filler in nitrile rubber: Order of addition and size of waste particles. Braz. J. Chem. Eng. 2009, 26, 23–31. [Google Scholar] [CrossRef]
- Brandt, H.; Nentwig, W.; Rooney, N.; LaFlair, R.; Wolf, U.; Duffy, J.; Puskas, J.; Kaszas, G.; Drewitt, M. Rubber, Solution Rubbers, Encyclopedia of Industrial Chemistry; Wiley-VCH: Hoboken, NJ, USA, 2012. [Google Scholar]
- Mellor, D.; Moir, A.; Scott, G. The effect of processing conditions on the u.v. stability of polyolefins. Eur. Polym. J. 1973, 9, 219–225. [Google Scholar] [CrossRef]
- Andrady, A. Plastics and Environmental Sustainability; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Santos, A.S.; Agnelli, J.A.; Trevisan, D.W.; Manrich, S. Degradation and stabilization of polyolefins from municipal plastic waste during multiple extrusions under different reprocessing conditions. Polym. Degrad. Stab. 2002, 77, 441. [Google Scholar] [CrossRef]
- Focke, W.W.; Mashele, R.P.; Nhlapo, N.S. Stabilization of low-density polyethylene films containing metal stearates as photodegradants. J. Vinyl. Addit. Technol. 2011, 1, 21–27. [Google Scholar] [CrossRef]
- Belviso, C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Q.; Zhu, Z. Characteristics of coal fly ash and adsorption application. Fuel 2008, 87, 3469–3473. [Google Scholar] [CrossRef]
Symbol | SBR | SBR1 (10) | SBR1 (20) | SBR1 (30) | SBR2 (10) | SBR2 (20) | SBR2 (30) |
---|---|---|---|---|---|---|---|
SBR [phr] | 100 | ||||||
BCA1 [phr] | 0 | 10 | 20 | 30 | 0 | 0 | 0 |
BCA2 [phr] | 0 | 0 | 0 | 0 | 10 | 20 | 30 |
N330 [phr] | 50 | 40 | 30 | 20 | 40 | 30 | 20 |
Stearin [phr] | 1 | ||||||
ZnO [phr] | 3 | ||||||
CBS [phr] | 1 | ||||||
Sulphur [phr] | 2 |
BCA1 | BCA2 | |||||
---|---|---|---|---|---|---|
Size Class [μm] | Δp [%] | q3 %[μm] | Δm [g] | Δp [%] | q3 %[μm] | Δm [g] |
<45 | 8.1 | 0–18 | 4.30 | 23.6 | 0.52 | 11.79 |
45–63 | 9.2 | 0.51 | 4.59 | 26.1 | 1.45 | 13–05 |
63–125 | 38.2 | 0.62 | 119.00 | 27.2 | 0.44 | 13.63 |
125–250 | 36.5 | 0.29 | 18.18 | 17.3 | 0.14 | 8.68 |
250–500 | 5.8 | 0.02 | 2.91 | 4.3 | 0.02 | 2.15 |
500–1000 | 1.4 | 0.00 | 0.72 | 0.8 | 0.00 | 0.40 |
1000–2000 | 0.5 | 0.00 | 0.26 | 0.4 | 0.00 | 0.18 |
2000–4000 | 0.0 | 0.00 | 0.01 | 0.3 | 0.00 | 0.16 |
>4000 | 0.1 | 0.00 | 0.05 | 0.0 | 0.00 | 0.00 |
Symbol | ML [dNm] | ∆M [dNm] | τ90 [min] |
---|---|---|---|
SBR | 2.22 | 18.12 | 11.35 |
SBR1 (10) | 1.90 | 17.11 | 9.67 |
SBR1 (20) | 1.25 | 12.82 | 10.84 |
SBR1 (30) | 1.37 | 12.68 | 12.99 |
SBR2 (10) | 1.53 | 13.40 | 11.08 |
SBR2 (20) | 1.52 | 13.03 | 11.36 |
SBR2 (30) | 1.48 | 12.72 | 12.06 |
Symbol | SBR | SBR1 (10) | SBR1 (20) | SBR1 (30) | SBR2 (10) | SBR2 (20) | SBR2 (30) |
---|---|---|---|---|---|---|---|
Total network density α [mol/cm3] | 2.00 × 10−4 | 1.94 × 10−4 | 9.35 × 10−5 | 1.39 × 10−4 | 9.35 × 10−5 | 1.51 × 10−5 | 1.64 × 10−4 |
Symbol | SBR | SBR1 (10) | SBR1 (20) | SBR1 (30) | SBR2 (10) | SBR2 (20) | SBR2 (30) |
---|---|---|---|---|---|---|---|
H [ºSh] | 60.85 ± 1.69 | 55.29 ± 2.63 | 55.39 ± 1.55 | 52.71 ± 1.08 | 54.43 ± 0.62 | 55.54 ± 1.12 | 51.83 ± 1.35 |
SE100 [MPa] | 3.37 ± 0.20 | 2.63 ± 0.23 | 1.53 ± 0.06 | 1.49 ± 0.06 | 1.79 ± 0.03 | 1.86 ± 0.05 | 1.51 ± 0.06 |
SE200 [MPa] | 8.47 ± 0.44 | 5.78 ± 0.52 | 2.44 ± 0.13 | 2.22 ± 0.13 | 3.48 ± 0.09 | 3.31 ± 0.17 | 2.21 ± 0.10 |
SE300 [MPa] | 15.57 ± 0.75 | 10.66 ± 0.96 | 3.98 ± 0.30 | 3.39 ± 0.26 | 6.51 ± 0.18 | 5.98 ± 0.37 | 3.36 ± 0.18 |
TS [MPa] | 27.37 ± 0.32 | 18.5 ± 0.20 | 13.38 ± 0.66 | 11.86 ± 0.40 | 19.00 ± 0.35 | 15.95 ± 0.98 | 11.94 ± 0.54 |
Eb [%] | 476 ± 24 | 441 ± 24 | 591 ± 25 | 619 ± 28 | 576 ± 15 | 535 ± 33 | 614 ± 14 |
Influence of theromoxidative and biological aging on the properties of SBR composites. | |||||||
Symbol | SBR | SBR1 (10) | SBR1 (20) | SBR1 (30) | SBR2 (10) | SBR2 (20) | SBR2 (30) |
TS [MPa] | 23.16 ± 1.65 | 12.87 ± 1.46 | 10.28 ± 0.98 | 9.34 ± 0.54 | 16.98 ± 1.65 | 14.24 ± 0.40 | 6.89 ± 1.75 |
Eb [%] | 282 ± 23 | 287 ± 18 | 370 ± 25 | 400 ± 16 | 423 ± 23 | 368 ± 17 | 422 ± 4 |
Symbol | Wavenumber [cm−1] | Carbonyl Index (CI) | |
---|---|---|---|
~1700 | ~2800 | ||
SBR | 0.92 | 6.30 | 0.15 |
SBR1 (10) | 0.38 | 7.64 | 0.05 |
SBR1 (30) | 0.91 | 8.80 | 0.10 |
Chemical Elements, % | Designations of Mixtures | ||
---|---|---|---|
SBR | SBR1 (10) | SBR1 (20) | |
Oxygen | 5.82 | 9.40 | 10.41 |
Sulfur | 1.46 | 1.65 | 2.03 |
Zinc | 1.27 | 0.58 | 1.74 |
Silicon | 0.008 | 0.96 | 1.51 |
Aluminum | - | 0.78 | 0.96 |
Calcium | - | 1.54 | 1.59 |
Iron | - | - | 1.28 |
Symbol | T5% (°C) | T peak 1 (DTG) (°C) | T peak 2 (DTG) (°C) | Δm total (%) | Tg (°C) |
---|---|---|---|---|---|
SBR | 337 | 465 | 697 | 97.51 | −46.23 |
SBR1 (10) | 337 | 466.33 | 681 | 91.55 | −46.92 |
Benzothiazoles | Benzothiazole Dimer | Aniline | X1 | X2 | |
---|---|---|---|---|---|
SBR | 1129 | 399 | 532 | 973 | 466 |
SBR1(10) | 961 | 171 | 178 | 608 | 264 |
SBR1(30) | 1102 | 192 | 423 | 888 | 371 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prochon, M.; Bieliński, D.; Stepaniak, P.; Makowicz, M.; Pietrzak, D.; Dzeikala, O. Use of Ashes from Lignite Combustion as Fillers in Rubber Mixtures to Reduce VOC Emissions. Materials 2021, 14, 4986. https://doi.org/10.3390/ma14174986
Prochon M, Bieliński D, Stepaniak P, Makowicz M, Pietrzak D, Dzeikala O. Use of Ashes from Lignite Combustion as Fillers in Rubber Mixtures to Reduce VOC Emissions. Materials. 2021; 14(17):4986. https://doi.org/10.3390/ma14174986
Chicago/Turabian StyleProchon, Miroslawa, Dariusz Bieliński, Paulina Stepaniak, Magdalena Makowicz, Dominik Pietrzak, and Oleksandra Dzeikala. 2021. "Use of Ashes from Lignite Combustion as Fillers in Rubber Mixtures to Reduce VOC Emissions" Materials 14, no. 17: 4986. https://doi.org/10.3390/ma14174986
APA StyleProchon, M., Bieliński, D., Stepaniak, P., Makowicz, M., Pietrzak, D., & Dzeikala, O. (2021). Use of Ashes from Lignite Combustion as Fillers in Rubber Mixtures to Reduce VOC Emissions. Materials, 14(17), 4986. https://doi.org/10.3390/ma14174986