Longevity of Polymer-Infiltrated Ceramic Network and Zirconia-Reinforced Lithium Silicate Restorations: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Strategy and Study Selection
2.5. Data Extraction
2.6. Risk of Bias in Individual Studies
2.7. Methods of Analysis
3. Results
3.1. Study Selection
3.2. Descriptive Analysis
3.2.1. Background Characteristics of the Included Studies
3.2.2. Restoration Characteristics
3.2.3. Outcome (Survival/Success) Assessment
3.2.4. Modes of Failure
3.3. Quantitative Analysis
Survival and Success
3.4. Risk of Bias within Studies
3.5. Strength of Recommendation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Vurrent status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [Green Version]
- VITA Zahnfabrik. VITA CAD/CAM MATERIALS Catalog for Practices and Laboratories; VITA Zahnfabrik: Bad Sackingen, Germany, 2020. [Google Scholar]
- Della Bona, A.; Corazza, P.H.; Zhang, Y. Characterization of a polymer-infiltrated ceramic-network material. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2014, 30, 564–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Bona, A.; Anusavice, K.J. Microstructure, composition, and etching topography of dental ceramics. Int. J. Prosthodont. 2002, 15, 159–167. [Google Scholar]
- VITA Zahnfabrik. VITA SUPRINITY PC Technical and Scientific Documentation; VITA Zahnfabrik: Bad Sackingen, Germany, 2019. [Google Scholar]
- Silva, L.H.D.; Lima, E.; Miranda, R.B.P.; Favero, S.S.; Lohbauer, U.; Cesar, P.F. Dental ceramics: A review of new materials and processing methods. Brazil. Oral Res. 2017, 31, e58. [Google Scholar] [CrossRef] [PubMed]
- Ramos Nde, C.; Campos, T.M.; Paz, I.S.; Machado, J.P.; Bottino, M.A.; Cesar, P.F.; De Melo, R.M. Microstructure characterization and SCG of newly engineered dental ceramics. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2016, 32, 870–878. [Google Scholar] [CrossRef] [Green Version]
- VITA Zahnfabrik. VITA ENAMIC Technical and Scientific Documentation; VITA Zahnfabrik: Bad Sackingen, Germany, 2019. [Google Scholar]
- Albero, A.; Pascual, A.; Camps, I.; Grau-Benitez, M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J. Clin. Exp. Dent. 2015, 7, e495–e500. [Google Scholar] [CrossRef] [PubMed]
- Argyrou, R.; Thompson, G.A.; Cho, S.H.; Berzins, D.W. Edge chipping resistance and flexural strength of polymer infiltrated ceramic network and resin nanoceramic restorative materials. J. Prosthet. Dent. 2016, 116, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Coldea, A.; Fischer, J.; Swain, M.V.; Thiel, N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2015, 31, 684–694. [Google Scholar] [CrossRef]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Mechanical properties and internal fit of 4 CAD-CAM block materials. J. Prosthet. Dent. 2018, 119, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.C.; Bansal, R.; Burgess, J.O. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2016, 32, e275–e283. [Google Scholar] [CrossRef]
- Seale, C. (Ed.) Validity, reliability and the quality of research. In Researching Society and Culture, 3rd ed.; SAGE: London, UK, 2012; pp. 528–543. [Google Scholar]
- Elsaka, S.E.; Elnaghy, A.M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Sen, N.; Us, Y.O. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef]
- Badawy, R.; El-Mowafy, O.; Tam, L.E. Fracture toughness of chairside CAD/CAM materials—Alternative loading approach for compact tension test. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2016, 32, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Wendler, M.; Belli, R.; Valladares, D.; Petschelt, A.; Lohbauer, U. Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2018, 34, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Traini, T.; Sinjari, B.; Pascetta, R.; Serafini, N.; Perfetti, G.; Trisi, P.; Caputi, S. The zirconia-reinforced lithium silicate ceramic: Lights and shadows of a new material. Dent. Mater. J. 2016, 35, 748–755. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, G.; Prochnow, C.; Firmino, A.; Amaral, M.; Bottino, M.A.; Valandro, L.F. Fatigue strength of several dental ceramics indicated for CAD-CAM monolithic restorations. Brazil. Oral Res. 2018, 32, e53. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.J.; Yoon, S.; Im, Y.W.; Lee, J.H.; Jung, H.J.; Lee, H.H. Uniaxial/biaxial flexure strengths and elastic properties of resin-composite block materials for CAD/CAM. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2019, 35, 389–401. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Liebermann, A.; Eichberger, M.; Güth, J.F. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J. Mech. Behav. Biomed. Mater. 2015, 55, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef]
- Kinney, J.H.; Balooch, M.; Marshall, G.W.; Marshall, S.J. A micromechanics model of the elastic properties of human dentine. Arch. Oral Biol. 1999, 44, 813–822. [Google Scholar] [CrossRef]
- Zhang, Y.; Kelly, J.R. Dental Ceramics for Restoration and Metal Veneering. Dent. Clin. North Am. 2017, 61, 797–819. [Google Scholar] [CrossRef]
- Sripetchdanond, J.; Leevailoj, C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: An in vitro study. J. Prosthet. Dent. 2014, 112, 1141–1150. [Google Scholar] [CrossRef]
- Oh, W.S.; Delong, R.; Anusavice, K.J. Factors affecting enamel and ceramic wear: A literature review. J. Prosthet. Dent. 2002, 87, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Mörmann, W.H.; Stawarczyk, B.; Ender, A.; Sener, B.; Attin, T.; Mehl, A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and Martens hardness. J. Mech. Behav. Biomed. Mater. 2013, 20, 113–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, S.B.; Lima, V.P.; Bronkhorst, E.M.; Crins, L.; Bronkhorst, H.; Opdam, N.J.M.; Huysmans, M.-C.D.N.J.M.; Loomans, B.A.C. Clinical performance of direct composite resin restorations in a full mouth rehabilitation for patients with severe tooth wear: 5.5-year results. J. Dent. 2021, 112, 103743. [Google Scholar] [CrossRef] [PubMed]
- Anusavice, K.J.; Kakar, K.; Ferree, N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin. Oral Implant. Res. 2007, 18, 218–231. [Google Scholar] [CrossRef]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, J.C.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses 2000. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 15 August 2021).
- Wallace, B.C.; Dahabreh, I.J.; Trikalinos, T.A.; Lau, J.; Trow, P.; Schmid, C.H. Closing the Gap between Methodologists and End-Users: R as a Computational Back-End. J. Stat. Softw. 2012, 49, 15. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ (Clin. Res. Ed.) 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Ebell, M.H.; Siwek, J.; Weiss, B.D.; Woolf, S.H.; Susman, J.; Ewigman, B.; Bowman, M. Strength of recommendation taxonomy (SORT): A patient-centered approach to grading evidence in the medical literature. Am. Fam. Physician 2004, 69, 548–556. [Google Scholar] [CrossRef]
- Chirumamilla, G.; Goldstein, C.E.; Lawson, N.C. A 2-year Retrospective Clinical study of Enamic Crowns Performed in a Private Practice Setting. J. Esthet. Restor. Dent. Off. Publ. Am. Acad. Esthet. Denti. 2016, 28, 231–237. [Google Scholar] [CrossRef]
- Lu, T.; Peng, L.; Xiong, F.; Lin, X.Y.; Zhang, P.; Lin, Z.T.; Wu, B.L. A 3-year clinical evaluation of endodontically treated posterior teeth restored with two different materials using the CEREC AC chair-side system. J. Prosthet. Dent. 2018, 119, 363–368. [Google Scholar] [CrossRef]
- Nassar, H.; Halim, C.H.; Katamish, H.A. Clinical outcomes of zirconia-reinforced lithium silicate partial coverage crowns compared to lithium disilicate partial coverage crowns. a randomized controlled split-mouth clinical study. F1000Research 2019, 8, 305. [Google Scholar] [CrossRef]
- Oudkerk, J.; Eldafrawy, M.; Bekaert, S.; Grenade, C.; Vanheusden, A.; Mainjot, A. The one-step no-prep approach for full-mouth rehabilitation of worn dentition using PICN CAD-CAM restorations: 2-yr results of a prospective clinical study. J. Dent. 2020, 92, 103245. [Google Scholar] [CrossRef] [PubMed]
- Rinke, S.; Brandt, A.; Hausdoerfer, T.; Leha, A.; Ziebolz, D. Clinical Evaluation of Chairside-Fabricated Partial Crowns Made of Zirconia- Reinforced Lithium Silicate Ceramic: 2-Year-Results. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 36–42. [Google Scholar] [PubMed]
- Rinke, S.; Pfitzenreuter, T.; Leha, A.; Roediger, M.; Ziebolz, D. Clinical evaluation of chairside-fabricated partial crowns composed of zirconia-reinforced lithium silicate ceramics: 3-year results of a prospective practice-based study. J. Esthet. Restor. Dent. 2019, 32, 226–235. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Scholz, K.J.; Strub, J.R.; Vach, K.; Gierthmuehlen, P.C. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. Clin. Oral Investig. 2018, 22, 1973–1983. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Scholz, K.J.; Vach, K.; Gierthmuehlen, P.C. Monolithic Polymer-Infiltrated Ceramic Network CAD/CAM Single Crowns: Three-Year Mid-Term Results of a Prospective Clinical Study. Int. J. Prosthodont. 2020, 33, 160–168. [Google Scholar] [CrossRef]
- Zimmermann, M.; Koller, C.; Mehl, A.; Hickel, R. Indirect zirconia-reinforced lithium silicate ceramic CAD/CAM restorations: Preliminary clinical results after 12 months. Quintessence Int. 2017, 48, 19–25. [Google Scholar]
- Alves de Carvalho, I.F.; Santos Marques, T.M.; Araújo, F.M.; Azevedo, L.F.; Donato, H.; Correia, A. Clinical Performance of CAD/CAM Tooth-Supported Ceramic Restorations: A Systematic Review. Int. J. Periodont. Restor. Dent. 2018, 38, e68–e78. [Google Scholar] [CrossRef]
- Al-Haj Husain, N.; Özcan, M.; Molinero-Mourelle, P.; Joda, T. Clinical Performance of Partial and Full-Coverage Fixed Dental Restorations Fabricated from Hybrid Polymer and Ceramic CAD/CAM Materials: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2107. [Google Scholar] [CrossRef]
- Bustamante-Hernández, N.; Montiel-Company, J.M.; Bellot-Arcís, C.; Mañes-Ferrer, J.F.; Solá-Ruíz, M.F.; Agustín-Panadero, R.; Fernández-Estevan, L. Clinical Behavior of Ceramic, Hybrid and Composite Onlays. A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 7582. [Google Scholar] [CrossRef]
- Morimoto, S.; Rebello de Sampaio, F.B.; Braga, M.M.; Sesma, N.; Özcan, M. Survival Rate of Resin and Ceramic Inlays, Onlays, and Overlays: A Systematic Review and Meta-analysis. J. Dent. Res. 2016, 95, 985–994. [Google Scholar] [CrossRef]
- Wittneben, J.G.; Wright, R.F.; Weber, H.P.; Gallucci, G.O. A systematic review of the clinical performance of CAD/CAM single-tooth restorations. Int. J. Prosthodont. 2009, 22, 466–471. [Google Scholar]
- Beier, U.S.; Kapferer, I.; Dumfahrt, H. Clinical long-term evaluation and failure characteristics of 1335 all-ceramic restorations. Int. J. Prosthodont. 2012, 25, 70–78. [Google Scholar] [PubMed]
- Vagropoulou, G.I.; Klifopoulou, G.L.; Vlahou, S.G.; Hirayama, H.; Michalakis, K. Complications and survival rates of inlays and onlays vs complete coverage restorations: A systematic review and analysis of studies. J. Oral Rehabil. 2018, 45, 903–920. [Google Scholar] [CrossRef] [PubMed]
- Pieger, S.; Salman, A.; Bidra, A.S. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: A systematic review. J. Prosthet. Dent. 2014, 112, 22–30. [Google Scholar] [CrossRef]
- Worni, A.; Katsoulis, J.; Kolgeci, L.; Worni, M.; Mericske-Stern, R. Monolithic zirconia reconstructions supported by teeth and implants: 1- to 3-year results of a case series. Quintessence Int. 2017, 48, 459–467. [Google Scholar] [PubMed]
- Ferrari, M.; Ferrari Cagidiaco, E.; Goracci, C.; Sorrentino, R.; Zarone, F.; Grandini, S.; Joda, T. Posterior partial crowns out of lithium disilicate (LS2) with or without posts: A randomized controlled prospective clinical trial with a 3-year follow up. J. Dent. 2019, 83, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, I.; Trikka, D.; Gasparatos, S.; Mitsias, M.E. Clinical Outcomes of Monolithic Zirconia Crowns with CAD/CAM Technology. A 1-Year Follow-Up Prospective Clinical Study of 65 Patients. Int. J. Environ. Res. Public Health 2018, 15, 2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anusavice, K.J. Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal-ceramic fixed dental prostheses. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2012, 28, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Ashok, N.; Jayalakshmi, S. Factors that influence the color stability of composite restorations. Int. J. Orofac. Biol. 2017, 1, 1–3. [Google Scholar]
- Comba, A.; Baldi, A.; Tempesta, R.M.; Carossa, M.; Perrone, L.; Saratti, C.M.; Rocca, T.G.; Femiano, R.; Femiano, F.; Scotti, N. Do Chemical-Based Bonding Techniques Affect the Bond Strength Stability to Cubic Zirconia? Materials 2021, 14, 3920. [Google Scholar] [CrossRef] [PubMed]
Search | Results | |
---|---|---|
#1 | picn OR picns OR enamic | 291 |
#2 | (“resin matri *” OR resin-matri *) NEAR/4 ceramic * | 45 |
#3 | (“polymer-infiltrated” OR “polymer infiltrated”) NEAR/4 ceramic * | 147 |
#4 | ((picn OR picns OR enamic) OR ((“resin matri *” OR resin-matri *) AND ceramic *)) OR ((polymer-infiltrated OR “polymer infiltrated”) AND ceramic *) | 364 |
#5 | zircon* NEAR/4 (“lithium silica *” OR lithium-silica *) | 123 |
#6 | zls NOT “zimmermann laband” | 101 |
#7 | “celtra duo” OR suprinity | 121 |
#8 | ((zircon* AND (“lithium silica *” OR lithium-silica *)) OR (ZLS NOT “zimmermann laband”)) OR (“celtra duo” OR suprinity) | 217 |
#9 | (((picn OR picns OR enamic) OR ((“resin matri *” OR resin-matri *) AND ceramic *)) OR ((polymer-infiltrated OR “polymer infiltrated”) AND ceramic *)) OR (((zircon * AND (“lithium silica *” OR lithium-silica *)) OR (ZLS NOT “zimmermann laband”)) OR (“celtra duo” OR suprinity)) | 519 |
Author/Year | Type of Study | Sample Size | Clinical Setting | Age (Mean, Range), Gender | Restoration (Material, Design) | Reason for Restoration | Bonding or Luting System | Follow up Period | Location (Anterior/ Posterior) | Number and Mode of Failure | Method, Clinical Assessment Details | Definition of Survival/ Success | Survival/Failure/ Success Rates |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chirumamilla et al. (2016) | R | 35 patients 45 restorations Follow up 29 patients 36 restorations | PrvP | (58, 26–85). 80% female, 20% male | PICN (VITA Enamic) Single unit full coverage crown | N.R | FujiCem (RMGIC) and Breeze or G-Cem LinkAce (Dual cure self-adhesive resin cement) | 2 years | Posterior 35 molars 10 premolars 20 maxillary 25 mandibular Follow up N.R | 2 absolute failures Secondary decay + debonding (n = 1), extension of pre-existing crack on abutment tooth requiring extraction (n = 1) | Clinical assessment Modified California Dental Association criteria 1 year evaluation: 1 non-independent evaluator 2 year evaluation: 1 non-independent evaluator, 1 independent evaluator | Failures (survival): crown fracture, crown chipping, crown debonding, endodontic treatment or internal crack of abutment | 96.8% survival (Dual cure resin cement) 92.9% survival (RMGIC) No SSD between cements |
Lu et al. (2018) | P | 93 patients 101 restorations 67 Vita Enamic 34 Vitablocs Mark II Follow up 91 patients 94 restorations 65 VITA Enamic 29 VITAblocs Mark II | Uni | (37.66, 18–71). 61% female, 39% male | PICN (VITA Enamic) and Feldspathic (VITA blocs Mark II) Onlay | Restorations for endodontically treated posterior teeth | NEXUS (Dual cure resin cement) | 3 years | Posterior 80 molars 21 premolars Follow up N.R | 5 absolute failures PICN Debonding (n = 1), tooth fracture (n = 1) Feldspathic debonding (n = 2), ceramic fracture (n = 1) | Clinical assessment USPHS criteria 2 non-independent evaluators | Failures (survival): criteria for failure not explicitly reported Debonding of restoration, ceramic fracture, tooth fracture | 97% survival PICN 90.7% survival Feldspathic No SSD in survival |
Rinke et al. (2019) | P | 71 patients 92 restorations Follow up 69 patients 88 restorations | PrvP | (48.9, N.R). 65% female, 35% male | ZLS (Celtra Duo) Partial crown restorations | N.R | Group A: Variolink (Dual cure resin cement) Group B: Calibra Cementation System (Self- adhesive resin cement) | 3 years | Posterior 74 molars 18 premolar Location not Reported Follow up 36 maxillary 52 mandibular 71 molar 17 premolar | 2 absolute failures Fracture of abutment (n = 1) Catastrophic fracture of ceramic (n = 1) 1 relative failure Loss of vitality of abutment (n = 1) | Clinical assessment Modified USPHS criteria 1 independent calibrated evaluator | Survival: restoration remained in situ without signs of total loss (clinically unacceptable ceramic fracture of the restoration or a biological event (caries, tooth fracture or periodontal disease) requiring complete replacement of the restoration or tooth extraction Success: reconstruction remained unchanged and functional in situ and intervention free during entire observational period | 99% Survival (overall) 98% success (overall) Group A: 98% survival (3 year) Group B: 100% survival (3 year) No SSD between group A and B |
Rinke et al. (2020) | P | 45 patients 61 restorations Follow up 44 patients 59 restorations | Uni | (50.7, N.R). 61% female, 39% male | ZLS (VITA Suprinity) Partial crown restorations | Teeth with indications for full covering restorations using ZLS ceramic material | Variolink (Dual-curing resin cement) OR RelyX Unicem (Dual cure self-adhesive cement) | 2 years | N.R Follow up 36 molars 23 premolars 34 maxillary 25 mandibular | 2 absolute failures Fracture of ceramic (n = 2) 2 clinical interventions/relative failures Loss of retention of PCR (n = 2) | Clinical assessment Modified USPHS criteria 1 independent calibrated evaluator | Survival: restoration remained in situ without signs of total loss (clinically unacceptable ceramic fracture or a biological event (caries, tooth fracture or periodontal disease) requiring complete replacement of the restoration or tooth extraction Success: reconstruction remained unchanged and functional in situ and intervention free during follow-up | 97% survival (overall) 93% success (overall) No SSD between thickness of material No SSD between cements |
Nassar et al. (2019) | RCT | 14 patients 46 restorations 23 VITA Suprinity 23 IPS e.max Follow up No Loss of patients | Uni | (N.R, N.R). 57% female, 43% male | ZLS (VITA Suprinity) and lithium disilicate (IPS e.max CAD) Partial coverage restorations | N.R | Duolink (Dual cure resin cement) | 1 year | Posterior 20 maxillary 26 mandibular | No failures reported | Clinical assessment Modified USPHS criteria Number of evaluators: N.R | Absolute Failure: loss of retention, fracture, crack development requiring replacement, secondary caries or endodontic complication | 100% survival |
Zimmermann et al. (2017) | P | 41 patients 67 restorations Follow up 37 patients 60 restorations | Uni | (45, N.R). 41% female 59% male. Follow up 46% female 54% male | ZLS (Celtra Duo) Partial crowns and inlays | N.R | Dual cure resin cement (brand N.R) | 1 year | Posterior 42 molars 25 premolars 38 maxillary 29 mandibular Follow up 38 molars 22 premolars 34 maxillary 26 mandibular | 2 absolute failures Bulk fracture of restoration (n = 2) | Clinical assessment Modified FDI criteria 1 independent calibrated evaluator | Failures: modified FDI criteria subcategories 4 and 5 (clinically insufficient but repairable, clinically unacceptable) Success: N.R | 3.3% failure 96.7% success |
Spitznagel et al. (2020) | P | 34 patients 76 restorations Follow up 27 patients 61 restorations | Uni | (52.6, N.R). 58.8% female, 41.2% male | PICN (VITA Enamic) Full coverage single crowns | Adult patients in need of full-coverage crowns | Variolink II (Dual cure resin cement) | 3 years | Anterior + Posterior 28 molars 41 premolars 7 incisors 48 maxillary 28 mandibular Follow up N.R | 4 absolute failures Catastrophic fracture of the restoration (n = 4) | Clinical assessment Modified USPHS criteria 2 independent evaluators | Absolute failures (survival): Clinically unacceptable fracture, secondary caries, debonding, Charlie classification of clinically unacceptable marginal discolouration or adaptation Relative Failures (success): clinically acceptable deteriorations such as minimal cohesive fractures, minor cracks, minor marginal staining or deviation in marginal fit (Bravo) | 93.9% survival 92.7% success |
Spitznagel et al. (2018) | P | 47 patients 103 restorations Follow up 37 patients 79 restorations | Uni | (47.6, N.R). 66% female, 34% male | PICN (VITA Enamic) Inlays and partial coverage restorations | Patients with carious lesions, insufficient fillings, or inlay restorations | Variolink II (Dual cure resin cement) | 3 years | Posterior 63 molars 40 premolars Follow up N.R | 3 absolute failures Bulk fracture of restoration (n = 3) 4 relative failures Minimal cohesive fractures (chipping) (n = 4) | Clinical assessment Modified USPHS criteria 2 independent evaluators | Absolute failures (survival): Clinically unacceptable fractures requiring replacement of restoration, inacceptable marginal discolouration, marginal adaptation, and secondary caries or debonding Relative failures (Success): Minimal cohesive fractures and clinically acceptable minor cracks, minor marginal stains and minor deviations in marginal fit | 96.4% survival (overall) 97.4% survival (inlay) 95.6% survival (PCR) 82.4% success (PCR) 84.8% success (inlay) |
Oudkerk et al. (2019) | P | 7 patients 192 restorations Follow up No loss of patients | Uni | (37.7, N.R). 14% female, 86% male | PICN (VITA Enamic HT), palatal veneer, posterior occlusal tabletops and veneerlays | Patients with severe wear of dentition with aesthetic or functional demand | Nexus XTR system (self-etch resin cement) | 2 years | Anterior + posterior 58 molars 56 premolars 26 canines 52 incisors | 12 relative failures Debonding of restoration (n = 1) Minor chipping (n = 12) | Clinical assessment FDI criteria 2 independent calibrated evaluators | Survival: not clearly reported. Each item on the FDI criteria is assessed on a Likert scale. Restorations scored a 5 were deemed requiring replacement Success: N.R | 100% 1 year survival 100% 2 year survival 100% 1 year success 93.7% 2 year success |
Study | Selection | Outcome | |||||
---|---|---|---|---|---|---|---|
Representativeness of exposed cohort | Ascertainment of exposure | Demonstration that outcome of interest was not present at start of study | Assessment of outcome | Was follow up long enough for outcomes to occur? | Adequacy of follow up of cohort | Out of 6 stars | |
Chirumamilla et al. | * | * | * | - | * | * | 5 |
Lu et al. | - | * | * | - | * | * | 4 |
Rinke et al. (3 year) | * | * | * | * | * | * | 6 |
Rinke et al. (2 year) | * | * | * | * | * | * | 6 |
Zimmermann et al. | * | * | * | * | * | * | 6 |
Spitznagel et al. (2020) | * | * | * | * | * | - | 5 |
Spitznagel et al. (2017) | * | * | * | * | * | - | 5 |
Oudkerk et al. | - | * | * | * | * | * | 5 |
Study | Nassar et al. |
---|---|
Domain 1: Risk of bias arising from the randomisation process | Low |
Domain 2: Risk of bias due to deviations from the intended interventions | Low |
Domain 3: Missing outcome data | Low |
Domain 4: Risk of bias in measurement of outcome | Low |
Domain 5: Risk of bias in selection of the reported result | Low |
Overall risk of bias | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banh, W.; Hughes, J.; Sia, A.; Chien, D.C.H.; Tadakamadla, S.K.; Figueredo, C.M.; Ahmed, K.E. Longevity of Polymer-Infiltrated Ceramic Network and Zirconia-Reinforced Lithium Silicate Restorations: A Systematic Review and Meta-Analysis. Materials 2021, 14, 5058. https://doi.org/10.3390/ma14175058
Banh W, Hughes J, Sia A, Chien DCH, Tadakamadla SK, Figueredo CM, Ahmed KE. Longevity of Polymer-Infiltrated Ceramic Network and Zirconia-Reinforced Lithium Silicate Restorations: A Systematic Review and Meta-Analysis. Materials. 2021; 14(17):5058. https://doi.org/10.3390/ma14175058
Chicago/Turabian StyleBanh, William, Jared Hughes, Aaron Sia, David C. H. Chien, Santosh K. Tadakamadla, Carlos M. Figueredo, and Khaled E. Ahmed. 2021. "Longevity of Polymer-Infiltrated Ceramic Network and Zirconia-Reinforced Lithium Silicate Restorations: A Systematic Review and Meta-Analysis" Materials 14, no. 17: 5058. https://doi.org/10.3390/ma14175058
APA StyleBanh, W., Hughes, J., Sia, A., Chien, D. C. H., Tadakamadla, S. K., Figueredo, C. M., & Ahmed, K. E. (2021). Longevity of Polymer-Infiltrated Ceramic Network and Zirconia-Reinforced Lithium Silicate Restorations: A Systematic Review and Meta-Analysis. Materials, 14(17), 5058. https://doi.org/10.3390/ma14175058