Effect of Temperature on Electrochemically Assisted Deposition and Bioactivity of CaP Coatings on CpTi Grade 4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. ECAD Conditions
2.3. Physicochemical Characteristics of CaP Coatings
2.4. In Vitro Bioactivity of CaP Coatings
3. Results and Discussion
3.1. Potentiodynamic Characteristics of CaP Coating Formation
3.2. Microstructure Studies of CaP Coatings
3.3. Effect of Deposition Temperature on Surface Morphology and Roughness of CaP Coatings
3.4. Effect of Deposition Temperature of CaP Coatings on In Vitro Bioactivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilbert, J.L. 1.2 Electrochemical Behavior of Metals in the Biological Milieu. In Comprehensive Biomaterials II, 2nd ed.; Ducheyne, P., Healy, K., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 19–49. ISBN 9780081006924. [Google Scholar] [CrossRef]
- Turkyilmaz, I. (Ed.) Implant Dentistry—A Rapidly Evolving Practice; IntechOpen: London, UK, 2011; ISBN 978-953-51-4447-2. [Google Scholar] [CrossRef]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterial Science—An Introduction to Materials in Medicine, 2nd ed.; Elsevier Academic Press: Cambridge, MA, USA, 2004; ISBN 0-12-582463-7. [Google Scholar]
- Prasad, S.; Ehrensberger, M.; Gibson, M.P.; Kim, H.; Monaco, E.A., Jr. Biomaterial properties of titanium in dentistry. J. Oral Biosci. 2015, 57, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Dudek, K.; Dulski, M.; Łosiewicz, B. Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer. Materials 2020, 13, 1648. [Google Scholar] [CrossRef] [Green Version]
- Freitag, M.; Łosiewicz, B.; Goryczka, T.; Lelątko, J. Application of EIS to Study the Corrosion Resistance of Passivated NiTi Shape Memory Alloy in Simulated Body Fluid. Solid State Phenom. 2012, 183, 57–64. [Google Scholar] [CrossRef]
- Stróż, A.; Łosiewicz, B.; Zubko, M.; Chmiela, B.; Balin, K.; Dercz, G.; Gawlikowski, M.; Goryczka, T. Production, Structure and Biocompatible Properties of Oxide Nanotubes on Ti13Nb13Zr Alloy for Medical Applications. Mater. Charact. 2017, 132, 363–372. [Google Scholar] [CrossRef]
- Osak, P.; Goryczka, T.; Łosiewicz, B. Effect of Polarization Scan Rate on the Pitting Potential of the Self-Passivated NiTi Shape Memory Alloy in a Simulated Body Fluid. Solid State Phenom. 2015, 227, 443–446. [Google Scholar] [CrossRef]
- Steinemann, S.G.; Eulenberger, J.; Mäusli, P.A.; Schroeder, A. Adhesion of bone to titanium. In Advances in Biomaterials; Christel, P., Meunier, A., Lee, A.J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1986; Volume 6, pp. 409–414. [Google Scholar]
- Kennedy, J.F.; Barker, S.A.; Humphreys, J.D. Insoluble complexes of amino-acids, peptides, and enzymes with metal hydroxides. J. Chem. Soc. Perkin 1. 1976, 9, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Hanawa, T. Titanium-tissue interface reaction and its control with surface treatment. Front. Bioeng. Biotechnol. 2019, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- ASTM F67-13. Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700); ASTM: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ISO 5832-2. Implants for Surgery—Metallic Materials—Part 2: Unalloyed Titanium; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Brunette, D.M.; Tengvall, P.; Textor, M.; Thomsen, P. Titanium in Medicine. Material Science, Surface Science, Engineering, Biological Responses and Medical Applications; Springer: Berlin/Heidelberg, Germany, 2001; pp. 145–162. ISBN 978-3-642-56486-4. [Google Scholar]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Niinomi, M. Recent research and development in titanium alloys for biomedical aplications and healthcare goods. Sci. Technol. Adv. Mater. 2003, 4, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Jokstad, A.; Braegger, U.; Brunski, J.B.; Carr, A.B.; Naert, I.; Wennerberg, A. Quality of dental implants. Int. Dent. J. 2003, 53, 409–443. [Google Scholar] [CrossRef]
- Łosiewicz, B.; Osak, P.; Maszybrocka, J.; Kubisztal, J.; Stach, S. Effect of autoclaving time on corrosion resistance of sandblasted Ti G4 in artificial saliva. Materials 2020, 13, 4154. [Google Scholar] [CrossRef]
- León, B.; Jansen, J. Thin Calcium Phosphate Coatings for Medical Implants; Springer Science + Business Media, LLC: New York, NY, USA, 2009; ISBN 978-0-387-77719-1. [Google Scholar]
- Piazza, R.D.; Pelizaro, T.A.G.; Rodriguez-Chanfrau, J.E.; La Serna, A.A.; Veranes-Pantoja, Y.; Guastaldi, A.C. Calcium phosphates nanoparticles: The effect of freeze-drying on particle size reduction. Mater. Chem. Phys. 2020, 239, 122004. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Sun, W.; Yang, X. First detection, characterization, and application of amorphous calcium phosphate in dentistry. J. Dent. Sci. 2012, 7, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Dorozhkin, S.V. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010, 6, 4457–4475. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M.; Miron, R.J. A proposed mechanism for material induced heterotopic ossification. Mater. Today 2019, 22, 132–141. [Google Scholar] [CrossRef]
- Zhang, F.; Allen, A.J.; Levine, L.E.; Vaudin, M.D.; Skrtic, D.; Antonucci, J.M.; Hoffman, K.M.; Giuseppetti, A.; Ilavsky, J. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites. Dent. Mater. 2014, 30, 1113–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, P.; Cai, F.; Nowicki, A.; Vincent, J.; Reynolds, E.C. Remineralization of enamel subsurface lesions by sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate. J. Dent. Res. 2001, 80, 2066–2070. [Google Scholar] [CrossRef]
- He, J.; Bao, Y.; Li, J.; Qiu, Z.; Liu, Y.; Zhang, X. Nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate reduce oral bacteria adherence and biofilm formation on human enamel surface. J. Dent. 2019, 80, 15–22. [Google Scholar] [CrossRef]
- Tao, S.; He, L.; Xu, H.H.K.; Weir, M.D.; Fan, M.; Yu, Z.; Zhang, M.; Zhou, X.; Liang, K.; Li, J. Dentin remineralization via adhesive containing amorphous calcium phosphate nanoparticles in a biofilm-challenged environment. J. Dent. 2019, 89, 103193. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.A.S.; Weir, M.D.; Passos, V.F.; Powers, M.; Xu, H.H.K. Ph-activated nano-amorphous calcium phosphate-based cement to reduce dental enamel demineralization. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1778–1785. [Google Scholar] [CrossRef]
- Combes, C.; Rey, C. Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomater. 2010, 6, 3362–3378. [Google Scholar] [CrossRef] [Green Version]
- Kanzaki, N.; Treboux, G.; Onuma, K.; Tsutsumi, S.; Ito, A. Calcium phosphate clusters. Biomaterials 2001, 22, 2921–2929. [Google Scholar] [CrossRef]
- Gelli, R.; Ridi, F.; Baglioni, P. The importance of being amorphous: Calcium and magnesium phosphates in the human body. Adv. Colloid Interface Sci. 2019, 269, 219–235. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, T.; Li, H.; Chen, M.; Cao, S.; Zhang, L.; Hou, X. Electrochemically assisted co-deposition of calcium phosphate/collagen coatings on carbon/carbon composites. Appl. Surf. Sci. 2011, 257, 3612–3619. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.; Ouyang, J.; Chen, X.; Xu, Z.; Sun, X. Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition. Appl. Surf. Sci. 2014, 305, 24–32. [Google Scholar] [CrossRef]
- Cotrut, C.M.; Vladescu, A.; Dinu, M.; Vranceanu, D.M. Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition. Ceram. Int. 2018, 44, 669–677. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Kalita, V.I.; Komlev, D.I.; Radiuk, A.A.; Fomin, A.S.; Davidova, G.A.; Fursova, N.K.; Murzakhanov, F.F.; Gafurov, M.R.; Fosca, M.; et al. In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma. Materials 2020, 13, 4411. [Google Scholar] [CrossRef] [PubMed]
- Adamek, G.; Jakubowicz, J. Mechanoelectrochemical synthesis and properties of porous nano-Ti–6Al–4V alloy with hydroxyapatite layer for biomedical applications. Electrochem. Commun. 2010, 12, 653–656. [Google Scholar] [CrossRef]
- Rössler, S.; Sewing, A.; Stölzel, M.; Born, R.; Scharnweber, D.; Dard, M.; Worch, H. Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature. J. Biomed. Mater. Res. 2003, 64, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.-Y.; Wang, X.-X. Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution. Surf. Coat. Technol. 2010, 204, 3205–3213. [Google Scholar] [CrossRef]
- Surmenev, R.A.; Surmeneva, M.A.; Ivanova, A.A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—A review. Acta Biomater. 2014, 10, 557–579. [Google Scholar] [CrossRef]
- Montero-Ocampo, C.; Villegas, D.; Veleva, L. Controlled potential electrodeposition of calcium phosphate on Ti6Al4V. J. Electrochem. Soc. 2005, 152, C692–C696. [Google Scholar] [CrossRef]
- Isa, N.N.C.; Mohd, Y.; Yury, N. Electrochemical deposition and characterization of hydroxyapatite (HAp) on titanium substrate. APCBEE Procedia 2012, 3, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Osak, P.; Maszybrocka, J.; Kubisztal, J.; Ratajczak, P.; Łosiewicz, B. Long-Term Assessment of the In Vitro Corrosion Resistance of Biomimetic ACP Coatings Electrodeposited from an Acetate Bath. J. Funct. Biomater. 2021, 12, 12. [Google Scholar] [CrossRef]
- FEPA Standard 42-1. Macrogrits F4~F220 for Grains of Fused Aluminium Oxide, Silicon Carbide and Other Abrasive Materials for Bonded Abrasives; FEPA: Paris France, 2006. [Google Scholar]
- JCGM 100. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; JCGM: Gaithersburg, MD, USA, 2008. [Google Scholar]
- ISO 4287: Geometrical Product Specifications (GPS)—Surface Texture: Profile method—Terms, Definitions and 903 Surface Texture Parameters; ISO: Geneva, Switzerland, 1997.
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Osak, P.; Łosiewicz, B. EIS Study on Interfacial Properties of Passivated Nitinol Orthodontic Wire in Saliva Modified with Eludril® Mouthwash. Prot. Met. Phys. Chem. Surf. 2018, 54, 680–688. [Google Scholar] [CrossRef]
- Kuo, M.C.; Yen, S.K. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mat. Sci. Eng. C 2002, 20, 153–160. [Google Scholar] [CrossRef]
- Jakubowicz, J.; Adamek, G. Hydroxyapatite deposited on flat and porous Ti. In Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Ban, S.; Maruno, S. Hydrothermal-electrochemical deposition of hydroxyapatite. J. Biomed. Mater. Res. 1998, 42, 387–395. [Google Scholar] [CrossRef]
- Łosiewicz, B.; Osak, P.; Dercz, G.; Gierlotka, D.; Kubisztal, J. The Manner of Deposition of Bioactive Coating of Calcium Phosphate on Element Made of Titanium Alloy. Patent No. 233784, 13 August 2019. The Patent Office of the Republic of Poland. [Google Scholar]
- Zhao, J.; Liu, Y.; Sun, W.B.; Zhang, H. Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J. 2011, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Blair, H.C.; Larrouture, Q.C.; Li, Y.; Lin, H.; Beer-Stoltz, D.; Liu, L.; Tuan, R.S.; Robinson, L.J.; Schlesinger, P.H.; Nelson, D.J. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro. Tiss. Eng. B Rev. 2017, 23, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Luo, X.; Barbieri, D.; Barradas, A.M.C.; De Bruijn, J.D.; Van Blitterswijk, C.A.; Yuan, H. The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomater. 2014, 10, 3254–3263. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, J.-M.; Guillem-Marti, J.; Montufar, E.B.; Espanol, M.; Ginebra, M.-P. Biomimetic Versus Sintered Calcium Phosphates: The In Vitro Behavior of Osteoblasts and Mesenchymal Stem Cells. Tiss. Eng. A 2017, 23, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Habibovic, P.; Yuan, H.; Van Der Valk, C.M.; Meijer, G.; Van Blitterswijk, C.A.; De Groot, K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 2005, 26, 3565–3575. [Google Scholar] [CrossRef]
- Barradas, A.M.C.; Fernandes, H.A.M.; Groen, N.; Chai, Y.C.; Schrooten, J.; Van De Peppel, J.; Van Leeuwen, J.P.T.M.; Van Blitterswijk, C.A.; De Boer, J. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 2012, 33, 3205–3215. [Google Scholar] [CrossRef]
- Wang, H.; Zhi, W.; Lu, X.; Li, X.; Duan, K.; Duan, R.; Mu, Y.; Weng, J. Comparative studies on ectopic bone formation in porous hydroxyapatite scaffolds with complementary pore structures. Acta Biomater. 2013, 9, 8413–8421. [Google Scholar] [CrossRef]
- Wakaki, M.; Yazaki, S.; Sunada, Y. Study on calcifying treatments of hydroxyapatite (HAp) using calcifying promotion solution. Lasers Dent. XV 2009, 7162, 71620S. [Google Scholar] [CrossRef]
- Vasquez, J.; Lozano, H.; Lavayen, V.; Lira-Cantú, M.; Gómez-Romero, P.; Santa Ana, M.A.; Benavente, E.; Gonzalez, G. High-Yield Preparation of Titanium Dioxide Nanostructures by Hydrothermal Conditions. J. Nanosci. Nanotechnol. 2009, 9, 1103–1107. [Google Scholar] [CrossRef] [Green Version]
- Pylypchuk, I.V.; Petranovskaya, A.L.; Gorbyk, P.P.; Korduban, A.M.; Markovsky, P.E.; Ivasishin, O.M. Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys. Nanoscale Res. Lett. 2015, 10, 338. [Google Scholar] [CrossRef] [Green Version]
- Drouet, C. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds. BioMed Res. Int. 2013, 2013, 490946. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Ye, J.; Gao, C.; Yu, L.; Wang, Y. Synthesis and Drug Delivery Property of Calcium Phosphate Cement with Special Crystal Morphology. J. Am. Ceram. Soc. 2010, 93, 1241–1244. [Google Scholar] [CrossRef]
Ion Type | Concentration [mM] |
---|---|
Na+ | 142.0 |
K+ | 5.0 |
Mg2+ | 1.5 |
Ca2+ | 2.5 |
Cl− | 147.8 |
4.2 | |
1.0 | |
0.5 |
Parameter | 20 °C | 30 °C | 40 °C | 50 °C | 60 °C | 70 °C | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | SD | Value | SD | Value | SD | Value | SD | Value | SD | Value | SD | |
Pa [µm2 m−1] | 2.98 | 0.15 | 3.83 | 0.07 | 4.41 | 0.03 | 4.37 | 0.20 | 4.65 | 0.31 | 3.94 | 0.01 |
Pq [µm] | 3.69 | 0.22 | 4.78 | 0.04 | 5.53 | 0.05 | 5.41 | 0.26 | 5.87 | 0.35 | 4.89 | 0.01 |
Pp [µm] | 9.62 | 0.69 | 13.85 | 4.03 | 23.30 | 3.68 | 16.90 | 1.13 | 16.35 | 0.21 | 16.25 | 0.49 |
Pv [µm] | 11.05 | 1.06 | 15.35 | 0.92 | 15.00 | 0.71 | 16.05 | 1.48 | 18.20 | 0.42 | 12.80 | 0.28 |
Pt [µm] | 20.65 | 0.35 | 29.20 | 3.11 | 38.20 | 4.38 | 32.95 | 0.35 | 34.55 | 0.21 | 29.05 | 0.21 |
Psk | −0.10 | 0.30 | −0.10 | 0.17 | 0.15 | 0.01 | 0.07 | 0.09 | −0.01 | 0.04 | 0.22 | 0.07 |
Pku | 2.70 | 0.04 | 2.95 | 0.28 | 3.33 | 0.33 | 2.70 | 0.01 | 2.89 | 0.17 | 2.82 | 0.01 |
Ra [µm] | 2.39 | 0.08 | 3.46 | 0.02 | 3.67 | 0.16 | 3.74 | 0.16 | 3.95 | 0.12 | 3.48 | 0.08 |
Rz [µm] | 15.10 | 0.71 | 20.95 | 0.78 | 22.30 | 0.28 | 23.25 | 1.06 | 23.75 | 0.07 | 20.50 | 1.70 |
Rp [µm] | 7.21 | 0.33 | 9.94 | 0.80 | 11.55 | 0.49 | 11.85 | 0.21 | 11.60 | 0.42 | 10.57 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łosiewicz, B.; Osak, P.; Maszybrocka, J.; Kubisztal, J.; Bogunia, S.; Ratajczak, P.; Aniołek, K. Effect of Temperature on Electrochemically Assisted Deposition and Bioactivity of CaP Coatings on CpTi Grade 4. Materials 2021, 14, 5081. https://doi.org/10.3390/ma14175081
Łosiewicz B, Osak P, Maszybrocka J, Kubisztal J, Bogunia S, Ratajczak P, Aniołek K. Effect of Temperature on Electrochemically Assisted Deposition and Bioactivity of CaP Coatings on CpTi Grade 4. Materials. 2021; 14(17):5081. https://doi.org/10.3390/ma14175081
Chicago/Turabian StyleŁosiewicz, Bożena, Patrycja Osak, Joanna Maszybrocka, Julian Kubisztal, Sylwia Bogunia, Patryk Ratajczak, and Krzysztof Aniołek. 2021. "Effect of Temperature on Electrochemically Assisted Deposition and Bioactivity of CaP Coatings on CpTi Grade 4" Materials 14, no. 17: 5081. https://doi.org/10.3390/ma14175081
APA StyleŁosiewicz, B., Osak, P., Maszybrocka, J., Kubisztal, J., Bogunia, S., Ratajczak, P., & Aniołek, K. (2021). Effect of Temperature on Electrochemically Assisted Deposition and Bioactivity of CaP Coatings on CpTi Grade 4. Materials, 14(17), 5081. https://doi.org/10.3390/ma14175081