Comparison of NSGA-II, MOALO and MODA for Multi-Objective Optimization of Micro-Machining Processes
Abstract
:1. Introduction
2. Multi-Objective Optimization
2.1. Non-Dominated Sorting Genetic Algorithm (NSGA-II)
- (I)
- Initialization of population of size using a uniform distribution.
- (II)
- Generate new offspring population by utilizing binary tournament selection which is based on crowding comparison operator, crossover, and mutation operation on the parent population (). Here, denoted the number of generations. The entire population () is the combination of offspring population () and its parent population ().
- (III)
- Non-dominated fronts of different objective functions are obtained by performing a fast non-dominated sorting approach on the entire population ().
- (IV)
- Generate a new parent population () from the obtained fronts.
- (V)
- This process is continued until the maximum number of iterations is reached.
2.2. Multi-Objective ant Lion Optimization (MOALO)
2.3. Multi-Objective Dragonfly Algorithm (MODA)
3. Multi-Criteria Decision Making with COPRAS
4. Results and Discussion
4.1. Example 1: Optimization of Micro-Turning Process Parameters
4.1.1. Mathematical Modelling
4.1.2. Multi-Objective Optimization
4.1.3. Comparison of the Metaheuristics
4.2. Example 2: Optimization of Micro End Milling Parameters
4.2.1. Problem Description and Formulation
4.2.2. Multi-Objective Optimization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
ALO | ant lion optimization |
CM | convergence metric |
COPRAS | complex proportional assessment |
DA | dragonfly algorithm |
EDM | electro-discharge machining |
GA-PSO | genetic algorithm-particle swarm optimization |
GD | generational distance |
IGD | inverted generational distance |
MCDM | multi-criteria decision making |
MOALO | multi-objective ant lion optimization |
MODA | multi-objective dragonfly optimization |
MOPSO | multi-objective particle swarm optimization |
MRR | material removal rate |
MVO | multiverse optimization |
NSGA-II | non-dominated sorting genetic algorithm ii |
RSM | response surface methodology |
SHO | spotted hyena optimizer |
SP | spread |
SR | surface roughness |
WOA | whale optimization algorithm |
References
- Ghosh, A.; Mallik, A.K. Manufacturing Science; Affiliated East-West Press: New Delhi, India, 1991. [Google Scholar]
- Singh, S.; Ghai, V.; Agrawal, A.; Singh, H. Effect of machining parameters on cutting force during micro-turning of a brass rod. Mater. Manuf. Process. 2019, 34, 1816–1823. [Google Scholar] [CrossRef]
- Selvakumar, S.; Kumar, R.R.; Ganesan, K. Analysis and optimisation of machining parameters in micro turning using RSM. Int. J. Mater. Prod. Technol. 2015, 51, 75–97. [Google Scholar] [CrossRef]
- Lu, Z.; Yoneyama, T. Micro cutting in the micro lathe turning system. Int. J. Mach. Tools Manuf. 1999, 39, 1171–1183. [Google Scholar] [CrossRef]
- Demircioglu, P.; Durakbasa, M.N. Investigations on machined metal surfaces through the stylus type and optical 3D instruments and their mathematical modeling with the help of statistical techniques. Measurement 2011, 44, 611–619. [Google Scholar] [CrossRef]
- Filiz, S.; Conley, C.M.; Wasserman, M.B.; Ozdoganlar, O.B. An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. Int. J. Mach. Tools Manuf. 2007, 47, 1088–1100. [Google Scholar] [CrossRef]
- Liu, K.; Melkote, S.N. Effect of plastic side flow on surface roughness in micro-turning process. Int. J. Mach. Tools Manuf. 2006, 46, 1778–1785. [Google Scholar] [CrossRef]
- Rao, R.V.; Kalyankar, V.D. Multi-pass turning process parameter optimization using teaching-learning-based optimization algorithm. Sci. Iran. 2013, 20, 967–974. [Google Scholar]
- Mondal, S.C.; Mandal, P. Application of artificial neural network for modeling surface roughness in centerless grinding operation. In Proceedings of the 5th International & 26th All India Manufacturing Technology, Design and Research Conference, IIT Guwahati, Guwahati, India, 12–14 December 2014. [Google Scholar]
- Yang, S.H.; Natarajan, U. Multi-objective optimization of cutting parameters in turning process using differential evolution and non-dominated sorting genetic algorithm-II approaches. Int. J. Adv. Manuf. Technol. 2010, 49, 773–784. [Google Scholar] [CrossRef]
- Mandal, P. Optimization of Surface Roughness in Centreless Grinding Process Based on Taguchi Method. In Data-Driven Optimization of Manufacturing Processes; IGI Global: Hershey, PA, USA, 2021; pp. 37–47. [Google Scholar] [CrossRef]
- Palani, S.; Natarajan, U.; Chellamalai, M. Multiple-response modelling and optimisation of micro-turning machining parameters using response surface method. Int. J. Mater. Eng. Innov. 2011, 2, 288–309. [Google Scholar] [CrossRef]
- De Oliveira, J.A.; Ribeiro Filho, S.L.; Lauro, C.H.; Brandão, L.C. Analysis of the micro turning process in the Ti-6Al-4V titanium alloy. Int. J. Adv. Manuf. Technol. 2017, 92, 4009–4016. [Google Scholar] [CrossRef]
- Kibria, G.; Doloi, B.; Bhattacharyya, B. Predictive model and process parameters optimization of Nd: YAG laser micro-turning of ceramics. Int. J. Adv. Manuf. Technol. 2013, 65, 213–229. [Google Scholar] [CrossRef]
- Kibria, G.; Doloi, B.; Bhattacharyya, B. Optimisation of Nd: YAG laser micro-turning process using response surface methodology. Int. J. Precis. Technol. 2012, 3, 14–36. [Google Scholar] [CrossRef]
- Pradhan, B.B.; Bhattacharyya, B. Modelling of micro-electrodischarge machining during machining of titanium alloy Ti-6Al-4V using response surface methodology and artificial neural network algorithm. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2009, 223, 683–693. [Google Scholar] [CrossRef]
- Dhupal, D.; Doloi, B.; Bhattacharyya, B. Optimization of process parameters of Nd: YAG laser microgrooving of Al2TiO5 ceramic material by response surface methodology and artificial neural network algorithm. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221, 1341–1350. [Google Scholar] [CrossRef]
- Mia, M.; Dhar, N.R. Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition. Neural Comput. Appl. 2019, 31, 2349–2370. [Google Scholar] [CrossRef]
- Chen, W.C.; Nguyen, M.H.; Chiu, W.H.; Chen, T.N.; Tai, P.H. Optimization of the plastic injection molding process using the Taguchi method, RSM, and hybrid GA-PSO. Int. J. Adv. Manuf. Technol. 2016, 83, 1873–1886. [Google Scholar] [CrossRef]
- Bharti, P.S.; Maheshwari, S.; Sharma, C. Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. J. Mech. Sci. Technol. 2012, 26, 1875–1883. [Google Scholar] [CrossRef]
- Pasandideh, S.H.; Niaki, S.T.; Sharafzadeh, S. Optimizing a bi-objective multi-product EPQ model with defective items, rework and limited orders: NSGA-II and MOPSO algorithms. J. Manuf. Syst. 2013, 32, 764–770. [Google Scholar] [CrossRef]
- Majumder, A.; Das, P.K.; Majumder, A.; Debnath, M. An approach to optimize the EDM process parameters using desirability-based multi-objective PSO. Prod. Manuf. Res. 2014, 2, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Majumder, A. Process parameter optimization during EDM of AISI 316 LN stainless steel by using fuzzy based multi-objective PSO. J. Mech. Sci. Technol. 2013, 27, 2143–2151. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, S.; Singh, M.; Verma, K.; Chaudhary, B.; Singh, S. Multi-objective particle swarm optimization of EDM parameters to deposit HA-coating on biodegradable Mg-alloy. Vacuum 2018, 158, 180–190. [Google Scholar] [CrossRef]
- Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Dubey, H.M.; Pandit, M.; Panigrahi, B.K. Ant lion optimization for short-term wind integrated hydrothermal power generation scheduling. Int. J. Electr. Power Energy Syst. 2016, 83, 158–174. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Du, P.; Li, Y. Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system. Energy 2018, 148, 59–78. [Google Scholar] [CrossRef]
- Różyło, P. Optimization of I-section profile design by the finite element method. Adv. Sci. Technol. Res. J. 2016, 10, 52–56. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y. A new multiplexed optimization with enhanced performance for complex air conditioning systems. Energy Build. 2017, 156, 85–95. [Google Scholar] [CrossRef]
- Tsumura, K. Hierarchically Aggregated Optimization Algorithm for Heterogeneously Dispersed Utility Functions. IFAC-PapersOnLine 2017, 50, 14442–14446. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K.; Roy, P.K.; Mehta, S.D. Comparative study of vector evaluated GA and NSGA applied to multiobjective optimization. In Proceedings of the Symposium on Genetic Algorithms, Dehradun, India, 25 March 1995; pp. 83–90. [Google Scholar]
- Coello, C.C.; Lechuga, M.S. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02, Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1051–1056. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Vo-Duy, T.; Duong-Gia, D.; Ho-Huu, V.; Vu-Do, H.C.; Nguyen-Thoi, T. Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm. Compos. Struct. 2017, 168, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 2017, 46, 79–95. [Google Scholar] [CrossRef]
- Kanimozhi, G.; Kumar, H. Modeling of solar cell under different conditions by Ant Lion Optimizer with LambertW function. Appl. Soft Comput. 2018, 71, 141–151. [Google Scholar] [CrossRef]
- Khalilpourazari, S.; Khalilpourazary, S. Optimization of time, cost and surface roughness in grinding process using a robust multi-objective dragonfly algorithm. Neural Comput. Appl. 2020, 32, 3987–3998. [Google Scholar] [CrossRef]
- Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl. Based Syst. 2018, 161, 185–204. [Google Scholar] [CrossRef]
- Yang, X.S. Firefly algorithm, Levy flights and global optimization. In Research and Development in Intelligent Systems XXVI; Springer: London, UK, 2010; pp. 209–218. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Kaklauskas, A.; Sarka, V. The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1994, 1, 131–139. [Google Scholar]
- Kumar, S.L. Measurement and uncertainty analysis of surface roughness and material removal rate in micro turning operation and process parameters optimization. Measurement 2019, 140, 538–547. [Google Scholar] [CrossRef]
- Kumar, S.L. Experimental investigations and empirical modeling for optimization of surface roughness and machining time parameters in micro end milling using Genetic Algorithm. Measurement 2018, 124, 386–394. [Google Scholar] [CrossRef]
Source | MRR | |||||||
---|---|---|---|---|---|---|---|---|
SS | df | F-Value | p-Value | SS | df | F-value | p-Value | |
Model | 0.0746 | 9 | 98.0800 | <0.0001 | 0.0020 | 9 | 31.5200 | <0.0001 |
0.0072 | 1 | 85.1700 | <0.0001 | 0.0000 | 1 | 4.1000 | 0.0588 | |
0.0246 | 1 | 291.3000 | <0.0001 | 0.0004 | 1 | 61.6100 | <0.0001 | |
0.0252 | 1 | 297.5700 | <0.0001 | 0.0012 | 1 | 176.2200 | <0.0001 | |
0.0027 | 1 | 31.7900 | <0.0001 | 0.0000 | 1 | 0.0437 | 0.8368 | |
0.0033 | 1 | 38.7100 | <0.0001 | 0.0000 | 1 | 2.0700 | 0.1681 | |
0.0114 | 1 | 134.5800 | <0.0001 | 0.0002 | 1 | 22.9500 | 0.0002 | |
0.0000 | 1 | 0.0114 | 0.9163 | 0.0000 | 1 | 5.0900 | 0.0375 | |
0.0000 | 1 | 0.0089 | 0.9261 | 0.0000 | 1 | 0.4815 | 0.4971 | |
0.0000 | 1 | 0.0453 | 0.834 | 0.0000 | 1 | 4.4300 | 0.0505 | |
Residual | 0.0014 | 17 | - | - | 0.0001 | 17 | - | - |
Cor Total | 0.0760 | 26 | - | - | 0.0021 | 26 | - | - |
Source | MRR | |||||||
---|---|---|---|---|---|---|---|---|
SS | df | F-Value | p-Value | SS | df | F-Value | p-Value | |
Model | 0.0746 | 6 | 172.4065 | <0.0001 | 0.0020 | 6 | 47.8004 | <0.0001 |
0.0072 | 1 | 99.8168 | <0.0001 | 0.0000 | 1 | 3.8989 | 0.062286 | |
0.0247 | 1 | 342.5487 | <0.0001 | 0.0004 | 1 | 62.4207 | <0.0001 | |
0.0252 | 1 | 349.6148 | <0.0001 | 0.0012 | 1 | 179.8334 | <0.0001 | |
0.0027 | 1 | 37.2514 | <0.0001 | - | - | - | - | |
0.0033 | 1 | 45.3691 | <0.0001 | - | - | - | - | |
0.0114 | 1 | 157.7203 | <0.0001 | 0.0002 | 1 | 23.4227 | <0.0001 | |
- | - | - | - | 0.0000 | 1 | 5.1986 | 0.033711 | |
- | - | - | - | - | - | - | - | |
- | - | - | - | 0.0000 | 1 | 4.5198 | 0.04615 | |
Residual | 0.0014 | 20 | - | - | 0.0001 | 20 | - | - |
Cor Total | 0.0760 | 26 | - | - | 0.0021 | 26 | - | - |
Metric | MRR | |||
---|---|---|---|---|
Original [42] | Modified | Original [42] | Modified | |
R2 | 0.9811 | 0.981 | 0.9435 | 0.9348 |
Adjusted R2 | 0.9711 | 0.9753 | 0.9135 | 0.9153 |
Predicted R2 | 0.9217 | 0.9365 | 0.8532 | 0.8788 |
Metric | MOALO | MODA | ||
---|---|---|---|---|
Original | Normalized | Original | Normalized | |
GD | 0.000012 | 0.000211 | 0.000016 | 0.000293 |
IGD | 0.000056 | 0.000884 | 0.000049 | 0.000793 |
CM | 0.000249 | 0.004399 | 0.000326 | 0.005884 |
SP | 1.525508 | 1.513864 | 1.166575 | 1.126299 |
W1 | Metaheuristic Method | COPRAS Solution | % Deviation with Respect to Best Solution | Average Deviation | ||
---|---|---|---|---|---|---|
MRR | Ra | MRR | Ra | |||
0.25 | NSGA-II | 0.00112 | 0.01456 | 31% | 0% | 16% |
MOALO | 0.00056 | 0.01453 | 65% | 0% | 33% | |
MODA | 0.00162 | 0.01459 | 0% | 0% | 0% | |
0.5 | NSGA-II | 0.06910 | 0.05757 | 0% | 287% | 143% |
MOALO | 0.00569 | 0.01488 | 92% | 0% | 46% | |
MODA | 0.00755 | 0.01504 | 89% | 1% | 45% | |
0.75 | NSGA-II | 0.06910 | 0.05757 | 1% | 0% | 0% |
MOALO | 0.06965 | 0.05799 | 0% | 1% | 0% | |
MODA | 0.06970 | 0.05801 | 0% | 1% | 0% |
Metaheuristic Method | COPRAS Solution | % Deviation with Respect to Best Solution | Average Deviation | ||
---|---|---|---|---|---|
Method | MRR | MRR | |||
NSGA-II | 0.00992 | 4.04054 | 0.00% | 0.00% | 0.00% |
MOALO | 0.00990 | 4.04063 | 0.21% | 0.00% | 0.11% |
MODA | 0.00989 | 4.04070 | 0.30% | 0.00% | 0.15% |
Metaheuristic Method | COPRAS Solution | % Deviation with Respect to Best Solution | Average Deviation | ||
---|---|---|---|---|---|
MRR | MRR | ||||
NSGA-II | 0.00998 | 4.08457 | 0.62% | 0.00% | 0.31% |
MOALO | 0.01004 | 4.08499 | 0.00% | 0.01% | 0.01% |
MODA | 0.00991 | 4.08558 | 1.28% | 0.02% | 0.65% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, M.; Ghadai, R.K.; Madhu, S.; Kalita, K.; Gao, X.-Z. Comparison of NSGA-II, MOALO and MODA for Multi-Objective Optimization of Micro-Machining Processes. Materials 2021, 14, 5109. https://doi.org/10.3390/ma14175109
Joshi M, Ghadai RK, Madhu S, Kalita K, Gao X-Z. Comparison of NSGA-II, MOALO and MODA for Multi-Objective Optimization of Micro-Machining Processes. Materials. 2021; 14(17):5109. https://doi.org/10.3390/ma14175109
Chicago/Turabian StyleJoshi, Milan, Ranjan Kumar Ghadai, S. Madhu, Kanak Kalita, and Xiao-Zhi Gao. 2021. "Comparison of NSGA-II, MOALO and MODA for Multi-Objective Optimization of Micro-Machining Processes" Materials 14, no. 17: 5109. https://doi.org/10.3390/ma14175109
APA StyleJoshi, M., Ghadai, R. K., Madhu, S., Kalita, K., & Gao, X. -Z. (2021). Comparison of NSGA-II, MOALO and MODA for Multi-Objective Optimization of Micro-Machining Processes. Materials, 14(17), 5109. https://doi.org/10.3390/ma14175109