Experimental and Numerical Investigation into Failure Modes of Tension Angle Members Connected by One Leg
Abstract
:1. Introduction
2. Experimental Program
2.1. Test Specimens
2.2. Test Set-Up, Instrumentation, and Procedures
2.3. Test Results
3. Finite Element Analysis
3.1. Material Model
3.2. Analysis Method
3.3. Comparison of FE Model Results with Tests in Global Terms
4. Observed Failure Mechanism
5. Design Considerations
- -
- with one bolt:
- -
- with two bolts:
- -
- with three or more bolts:
6. Summary and Conclusions
- The GTN material model prediction showed very high agreement with the results of the experimental tests of the load capacity and global behaviour of the elements.
- The failure modes obtained from FE modelling where GTN material was used agreed to a high degree with the test results regarding to the form of initiation of plastic fracture and its further development.
- Numerical analyses showed three possible failure modes: net-section tearing, typical block tearing and limited block tearing (block tearing with an area not fully sheared).
- This research indicates that, in very short connections (Lj/d0 ≤ 5.0), limited block tearing may determine joint resistance. In this case, full plasticisation does not occur along length e1.
- The obtained results of load capacity compared with design procedures given in proposed revisions of Eurocode 3 [36] indicated a satisfactory agreement.
- Nevertheless, analytical models of block tearing did not precisely reflect the actual shear failure path observed in numerical simulations, especially for very short connections where limited block tearing was observed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munse, W.H.; Chesson, E.C., Jr. Riveted and bolted joints: Net section design. J. Struct. Div. 1963, 89, 107–126. [Google Scholar] [CrossRef]
- Kulak, G.L.; Wu, E.Y. Shear lag in bolted angle tension members. J. Struct. Eng. 1997, 123, 1144–1152. [Google Scholar] [CrossRef]
- Munter, H.L.N.; Bouwman, L.P. Angles Connected by Bolts in One Leg, Comparison to French, Eurocode 3 and Dutch Formulae with the Results of French and Dutch Tests; Report: 6 81 21; Stevin Laboratory, Department of Civil Engineering, Delft University of Technology: Delft, The Netherlands, 1981. [Google Scholar]
- Birkemoe, P.C.; Gilmor, M.I. Behavior of bearing critical double-angle beam connections. Eng. J. AISC 1978, 15, 109–115. [Google Scholar]
- Orbison, J.G.; Wagner, M.E.; Fritz, W.P. Tension plane behavior in single-row bolted connections subject to block shear. J. Constr. Steel Res. 1999, 49, 225–239. [Google Scholar] [CrossRef]
- Epstein, H.I. An experimental study of block shear failure of angles in tension. Eng. J. AISC 1992, 29, 75–84. [Google Scholar]
- Ke, K.; Xiong, Y.; Yam, M.C.; Lam, A.C.; Chung, K. Shear lag effect on ultimate tensile capacity of high strength steel angles. J. Constr. Steel Res. 2018, 145, 300–314. [Google Scholar] [CrossRef]
- Jiang, B.; Yam, M.C.; Ke, K.; Lam, A.C.; Zhao, Q. Block shear failure of S275 and S690 steel angles with single-line bolted connections. J. Constr. Steel Res. 2020, 170, 106068. [Google Scholar] [CrossRef]
- Dhanuskar, J.R.; Gupta, L.M. Experimental investigation of block shear failure in a single angle tension member. Int. J. Steel Struct. 2020, 20, 1636–1650. [Google Scholar] [CrossRef]
- Epstein, H.; Chamarajanagar, R. Finite element studies for correlation with block shear tests. Comput. Struct. 1996, 61, 967–974. [Google Scholar] [CrossRef]
- Topkaya, C. A finite element parametric study on block shear failure of steel tension members. J. Constr. Steel Res. 2004, 60, 1615–1635. [Google Scholar] [CrossRef]
- Helwe, M.B.; El Kalash, S.; Hantouche, E.G. Alternate block shear in beams: Experimental and FE fracture modeling. Eng. Struct. 2019, 186, 110–120. [Google Scholar] [CrossRef]
- Wen, H.; Mahmoud, H. Simulation of block shear fracture in bolted connections. J. Constr. Steel Res. 2017, 134, 1–16. [Google Scholar] [CrossRef]
- Ma, R.; Yu, L.; Zhang, H.; Tan, L.; Kueh, A.B.; Feng, J.; Cai, J. Experimental and numerical appraisal of steel joints integrated with single- and double-angles for transmission line towers. Thin-Walled Struct. 2021, 164, 107833. [Google Scholar] [CrossRef]
- Sharda, A.; Manalo, A.; Ferdous, W.; Bai, Y.; Nicol, L.; Mohammed, A.; Benmokrane, B. Axial compression behavior of all-composite modular wall system. Compos. Struct. 2021, 268, 113986. [Google Scholar] [CrossRef]
- Može, P. Statistical evaluation of bearing resistance and related strength functions for bolted connections. J. Constr. Steel Res. 2020, 171, 106128. [Google Scholar] [CrossRef]
- Može, P. Angles connected by one leg in tension. Ce/papers 2017, 1, 3771–3780. [Google Scholar] [CrossRef]
- EN 1090-2 Execution of Steel Structures and Aluminium Structures—Part 2: Technical Requirements for Steel Structures; CEN: Brussels, Belgium, 2018.
- EN 1993-1-8 Eurocode 3: Design of Steel Structures—Part 1–8: Design of Joints; CEN: Brussels, Belgium, 2005.
- EN ISO 6892-1 Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature; CEN: Brussels, Belgium, 2019.
- Kanvinde, A. Predicting fracture in civil engineering steel structures: State of the art. J. Struct. Eng. 2017, 143, 03116001. [Google Scholar] [CrossRef]
- Francois, D.; Pineau, A.; Zaoui, A. Mechanical Behaviour of Materials. Volume II: Fracture Mechanics and Damage; Springer: Dordrecht, 2013. [Google Scholar]
- Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Feldmann, M.; Schaffrath, S. Application of damage theory to structures made from high-strength steels. Steel Constr. 2018, 11, 257–263. [Google Scholar] [CrossRef]
- Feldmann, M.; Schaffrath, S. Assessing the net section resistance and ductility requirements of EN 1993-1-1 and EN 1993-1-12. Steel Constr. 2017, 10, 354–364. [Google Scholar] [CrossRef]
- Kossakowski, P. Simulation of ductile fracture of S235JR steel using computational cells with microstructurally-based length scales. J. Theor. App. Mech. Pol. 2012, 50, 589–607. [Google Scholar]
- Qian, X.D.; Choo, Y.S.; Liew, R.; Wardenier, J. Simulation of ductile fracture of circular hollow section joints using the Gurson model. J. Struct. Eng. 2005, 131, 768–780. [Google Scholar] [CrossRef]
- EN 10025 Hot Rolled Products of Structural Steels; CEN: Brussels, Belgium, 2007.
- Kossakowski, P.; Wciślik, W. Numerical simulation of material damage for structural steels S235JR and S355J2G3. Adv. Comput. Des. 2018, 3, 133–146. [Google Scholar] [CrossRef]
- Kossakowski, P. Analysis of the void volume fraction for S235JR steel at failure for low initial stress triaxiality. Arch. Civ. Eng. 2018, 64, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Bernatowska, E. Numerical simulations of ductile fracture in steel angle tension members connected with bolts. Civ. Environ. Eng. Rep. 2020, 30, 32–54. [Google Scholar] [CrossRef]
- Abaqus, Version 6.16; Dassault Systemes: Vélizy-Villacoublay, France, 2016.
- Kim, T.S.; Kuwamura, H. Finite element modeling of bolted connections in thin-walled stainless steel plates under static shear. Thin Walled Struct. 2007, 45, 407–421. [Google Scholar] [CrossRef]
- Salih, E.; Gardner, L.; Nethercot, D. Numerical investigation of net section failure in stainless steel bolted connections. J. Constr. Steel Res. 2010, 66, 1455–1466. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, J.-C.; Kang, B.-S. Finite element analysis and modeling of structure with bolted joints. Appl. Math. Model. 2007, 31, 895–911. [Google Scholar] [CrossRef]
- prEN 1993-1-8:2021: Eurocode 3—Design of Steel Structures—Part 1–8: Design of Joints; CEN/TC250: Brussels, Belgium, 2021.
No. | Symbol | Profile | Bolts | p1 [mm] | e1 [mm] | e2 [mm] | Observed Form of Failure | Fult,Ex [kN] | Ueff [-] |
---|---|---|---|---|---|---|---|---|---|
1. | J8/2/55/40 | L80 × 80 × 6 | 2×M20-10.9 | 55 | 70 | 40 | FI | 209.8 | 0.60 |
2. | J8/2/110/40 | L80 × 80 × 6 | 2×M20-10.9 | 110 | 70 | 40 | FP | 249.6 | 0.71 |
3. | J8/2/55/30 | L80 × 80 × 6 | 2×M20-10.9 | 55 | 70 | 30 | FI | 163.6 | 0.46 |
4. | J8/2/80/40 | L80 × 80 × 6 | 2×M20-10.9 | 80 | 70 | 40 | FI | 228.5 | 0.65 |
5. | J8/2/80/30 | L80 × 80 × 6 | 2×M20-10.9 | 80 | 70 | 30 | FI | 184.8 | 0.53 |
6. | J8/3/55/40 | L80 × 80 × 6 | 3×M20-8.8 | 55 | 70 | 40 | FI | 242.1 | 0.69 |
7. | J8/3/110/40 | L80 × 80 × 6 | 3×M20-8.8 | 110 | 70 | 40 | FI | 283.3 | 0.81 |
8. | J8/4/55/40 | L80 × 80 × 6 | 4×M20-8.8 | 55 | 70 | 40 | FP | 268.6 | 0.77 |
9. | J6/2/45/34 | L60 × 60 × 6 | 2×M16-8.8 | 45 | 55 | 34 | BF | 179.2 | - |
10. | J6/2/90/34 | L60 × 60 × 6 | 2×M16-10.9 | 90 | 55 | 34 | BF/FI | 218.2 | 0.80 |
11. | J6/2/45/25 | L60 × 60 × 6 | 2×M16-10.9 | 45 | 55 | 25 | FI | 138.6 | 0.51 |
12. | J6/2/90/25 | L60 × 60 × 6 | 2×M16-8.8 | 90 | 55 | 25 | BF | 174.0 | - |
13. | J6/3/45/25 | L60 × 60 × 6 | 3×M16-10.9 | 45 | 55 | 25 | FI | 180.7 | 0.66 |
14. | J6/3/90/25 | L60 × 60 × 6 | 3×M16-10.9 | 90 | 55 | 25 | FP | 216.7 | 0.80 |
15. | J6/4/45/34 | L60 × 60 × 6 | 4×M16-8.8 | 45 | 55 | 34 | FP | 234.1 | 0.86 |
16. | J6/4/70/34 | L60 × 60 × 6 | 4×M16-8.8 | 70 | 55 | 34 | FP | 245.5 | 0.91 |
17. | J6/4/70/25 | L60 × 60 × 6 | 4×M16-8.8 | 70 | 55 | 25 | FI | 224.1 | 0.82 |
18. | J6/5/60/34 | L60 × 60 × 6 | 5×M16-8.8 | 60 | 55 | 34 | FP | 247.5 | 0.91 |
Element | Yield Strength fy [MPa] | Ultimate Strength fu [MPa] | ||
---|---|---|---|---|
Mean Value | Standard Deviation | Mean Value | Standard Deviation | |
L80 × 80 × 6 | 288 | 3.3 | 425 | 4.2 |
L60 × 60 × 6 | 325 | 3.7 | 470 | 2.3 |
Gusset plate | 424 | 5.1 | 590 | 4.6 |
f0 | Tvergaard Parameters qi | fc | fF | fN | εN | sN |
---|---|---|---|---|---|---|
0.01 | q1 = 1.5; q2 = 1.0; q3 = 2.25 | 0.06 | 0.2 | 0.02 | 0.3 | 0.1 |
No. | Symbol | Fult,Ex [kN] | Fult,FEA [kN] | ΔF [-] | Lult,Ex [mm] | Lult,FEA [mm] | ΔL [-] |
---|---|---|---|---|---|---|---|
1. | J8/2/55/40 | 209.8 | 200.4 | −0.04 | 20.8 | 14.0 | −0.33 |
2. | J8/2/110/40 | 249.6 | 245.9 | −0.02 | 27.3 | 21.6 | −0.21 |
3. | J8/2/55/30 | 163.6 | 158.2 | −0.03 | 15.7 | 10.4 | −0.34 |
4. | J8/2/80/40 | 228.5 | 227.5 | −0.004 | 20.6 | 18.1 | −0.12 |
5. | J8/2/80/30 | 184.8 | 179.6 | −0.03 | 19.8 | 12.6 | −0.37 |
6. | J8/3/55/40 | 242.1 | 248.1 | 0.02 | 18.8 | 15.3 | −0.19 |
7. | J8/3/110/40 | 283.3 | 294.4 | 0.04 | 21.8 | 15.3 | −0.30 |
8. | J8/4/55/40 | 268.6 | 283.8 | 0.06 | 17.7 | 14.8 | −0.16 |
9. | J6/2/45/34 | n.a. | n.a. | n.a. | n.a. | ||
10. | J6/2/90/34 | 218.2 | 214.3 | −0.02 | 30.8 * | 16.8 | n.a. |
11. | J6/2/45/25 | 138.6 | 140.8 | 0.02 | 9.9 | 9.6 | −0.03 |
12. | J6/2/90/25 | n.a. | n.a. | n.a. | n.a. | ||
13. | J6/3/45/25 | 180.7 | 184.4 | 0.02 | 11.4 | 10.4 | −0.09 |
14. | J6/3/90/25 | 216.7 | 226.7 | 0.05 | 16.9 | 11.5 | −0.32 |
15. | J6/4/45/34 | 234.1 | 242.5 | 0.04 | 17.0 | 12.1 | −0.29 |
16. | J6/4/70/34 | 245.5 | 255.4 | 0.04 | 16.6 | 11.9 | −0.28 |
17. | J6/4/70/25 | 224.1 | 229.1 | 0.02 | 15.4 | 8.7 | −0.44 |
18. | J6/5/60/34 | 247.5 | 248.1 | 0.002 | 16.4 | 10.9 | −0.34 |
Mean value | 0.01 | −0.25 ** | |||||
Standard deviation | 0.03 | 0.12 ** |
No. | Symbol | Failure Mode | |
---|---|---|---|
Test | FE Modelling | ||
1. | J8/2/55/40 | FI | BT-L |
2. | J8/2/110/40 | FP | BT |
3. | J8/2/55/30 | FI | BT-L |
4. | J8/2/80/40 | FI | BT-L |
5. | J8/2/80/30 | FI | BT-L |
6. | J8/3/55/40 | FI | BT |
7. | J8/3/110/40 | FI | BT |
8. | J8/4/55/40 | FP | BT |
9. | J6/2/45/34 | BF | n.a. |
10. | J6/2/90/34 | BF/FI | BT |
11. | J6/2/45/25 | FI | BT-L |
12. | J6/2/90/25 | BF | n.a. |
13. | J6/3/45/25 | FI | BT-L |
14. | J6/3/90/25 | FP | NT |
15. | J6/4/45/34 | FP | BT |
16. | J6/4/70/34 | FP | NT |
17. | J6/4/70/25 | FI | NT |
18. | J6/5/60/34 | FP | NT |
No. | Symbol | Failure Mode from FE Model | EN 1993-1-8: 2005 | prEN 1993-1-8: 2021 | ||
---|---|---|---|---|---|---|
Theoretical Resistance Based on: | ΔF [-] | Theoretical Resistance Based on: | ΔF [-] | |||
1. | J8/2/55/40 | BT-L | N | −0.33 | V | 0.0 |
2. | J8/2/110/40 | BT | V | −0.06 | N | 0.05 |
3. | J8/2/55/30 | BT-L | N | −0.13 | V | 0.12 |
4. | J8/2/80/40 | BT-L | N | −0.17 | V | 0.04 |
5. | J8/2/80/30 | BT-L | V | −0.05 | V | 0.13 |
6. | J8/3/55/40 | BT | N | −0.28 | N | 0.09 |
7. | J8/3/110/40 | BT | N | −0.13 | N | −0.07 |
8. | J8/4/55/40 | BT | N | −0.35 | N | −0.02 |
9. | J6/2/45/34 | n.a. | - | - | - | - |
10. | J6/2/90/34 | BT | N | −0.13 | N | −0.07 |
11. | J6/2/45/25 | BT-L | N | −0.21 | V | 0.20 |
12. | J6/2/90/25 | n.a. | - | - | - | - |
13. | J6/3/45/25 | BT-L | N | −0.24 | N | 0.13 |
14. | J6/3/90/25 | NT | N | −0.12 | N | −0.06 |
15. | J6/4/45/34 | BT | N | −0.42 | N | −0.13 |
16. | J6/4/70/34 | NT | N | −0.32 | N | −0.17 |
17. | J6/4/70/25 | NT | N | −0.26 | N | −0.09 |
18. | J6/5/60/34 | NT | N | −0.38 | N | −0.17 |
ΔF,m | −0.22 | 0.00 | ||||
ΔF,s | 0.11 | 0.12 | ||||
ΔF,min | −0.42 | −0.17 | ||||
ΔF,max | −0.05 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernatowska, E.; Ślęczka, L. Experimental and Numerical Investigation into Failure Modes of Tension Angle Members Connected by One Leg. Materials 2021, 14, 5141. https://doi.org/10.3390/ma14185141
Bernatowska E, Ślęczka L. Experimental and Numerical Investigation into Failure Modes of Tension Angle Members Connected by One Leg. Materials. 2021; 14(18):5141. https://doi.org/10.3390/ma14185141
Chicago/Turabian StyleBernatowska, Edyta, and Lucjan Ślęczka. 2021. "Experimental and Numerical Investigation into Failure Modes of Tension Angle Members Connected by One Leg" Materials 14, no. 18: 5141. https://doi.org/10.3390/ma14185141
APA StyleBernatowska, E., & Ślęczka, L. (2021). Experimental and Numerical Investigation into Failure Modes of Tension Angle Members Connected by One Leg. Materials, 14(18), 5141. https://doi.org/10.3390/ma14185141