Grain Boundary Evolution of Cellular Nanostructured Sm-Co Permanent Magnets
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- A further decomposition of 2:17H into 2:17R and 1:5H/1:3R occurred at the grain boundaries as also observed within the grain interiors [19].
- Due to the sparser DACBs, the 1:5H precipitates were constrained between 2:17R and Smn+1Co5n−1 primary precipitates, and further transformed into Smn+1Co5n−1.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ojima, T.; Tomizawa, S.; Yoneyama, T.; Hori, T. Magnetic properties of a new type of rare-earth cobalt magnets Sm2(Co, Cu, Fe, M)17. IEEE Trans. Magn. 1977, 13, 1317–1319. [Google Scholar] [CrossRef]
- Buschow, K.H.J. Handbook of Magnetic Materials, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 463–593. [Google Scholar]
- Xiong, X.Y.; Ohkubo, T.; Koyama, T.; Ohashi, K.; Tawara, Y.; Hono, K. The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe. Acta Mater. 2004, 52, 737–748. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Müller, K.H.; Khlopkov, K.; Wolf, M.; Yan, A.R.; Schäfer, R.; Gemming, T.; Schultz, L. Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets. Acta Mater. 2006, 54, 997–1008. [Google Scholar] [CrossRef]
- Xia, W.; He, Y.K.; Huang, H.B.; Wang, H.; Shi, X.M.; Zhang, T.L.; Liu, J.H.; Stamenov, P.; Chen, L.Q.; Coey, J.M.D.; et al. Initial irreversible losses and enhanced high-temperature performance of rare-earth permanent magnets. Adv. Funct. Mater. 2019, 29, 1900690. [Google Scholar] [CrossRef]
- Sepehri-Amin, H.; Thielsch, J.; Fischbacher, J.; Ohkubo, T.; Schrefl, T.; Gutfleisch, O.; Hono, K. Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets. Acta Mater. 2017, 126, 1–10. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, T.L.; Liu, J.H.; Xu, H.; Hu, M.Y.; Xia, W.; Wang, H.; Jiang, C.B. Grain boundary optimization induced substantial squareness enhancement and high performance in iron-rich Sm-Co-Fe-Cu-Zr magnets. J. Mater. Sci. Technol. 2021, 85, 56–61. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.; Liu, J.P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Coey, J.M.D. Perspective and Prospects for Rare Earth Permanent Magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Zeng, H.X.; Liu, Z.W.; Zhang, J.S.; Liao, X.F.; Yu, H.Y. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process. J. Mater. Sci. Technol. 2020, 36, 50–54. [Google Scholar] [CrossRef]
- Ma, T.Y.; Yan, M.; Wu, K.Y.; Wu, B.; Liu, X.L.; Wang, X.J.; Qian, Z.Y.; Wu, C.; Xia, W.X. Grain boundary restructuring of multi-main-phase Nd-Ce-Fe-B sintered magnets with Nd hydrides. Acta Mater. 2018, 142, 18–28. [Google Scholar] [CrossRef]
- Livingston, J.D.; Martin, D.L. Microstructure of aged (Co, Cu, Fe)7 Sm magnets. J. Appl. Phys. 1977, 48, 1350–1354. [Google Scholar] [CrossRef]
- Goll, D.; Kronmüller, H.; Stadelmaier, H.H. Micromagnetism and the microstructure of high-temperature permanent magnets. J. Appl. Phys. 2004, 96, 6534–6545. [Google Scholar] [CrossRef]
- Rabenberg, L.; Mishra, R.K.; Thomas, G. Microstructures of precipitation hardened SmCo permanent magnets. J. Appl. Phys. 1982, 53, 2389–2391. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.S.; Wang, Y.Q.; Yao, Y.; Qu, J.T.; Yun, F.; Li, Y.Q.; Ringer, S.P.; Yue, M.; Zheng, R.K. Attractive-domain-wall-pinning controlled Sm-Co magnets overcome the coercivity-remanence trade-off. Acta Mater. 2019, 164, 196–206. [Google Scholar] [CrossRef]
- Song, K.K.; Fang, Y.; Wang, S.; Yu, N.J.; Chen, H.S.; Zhang, M.L.; Zhu, M.G.; Lei, W. Crystalline and magnetic microstructures of iron-rich Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 sintered magnets: Isothermal aging effect. J. Magn. Magn. Mater. 2018, 465, 569–577. [Google Scholar] [CrossRef]
- Gong, S.T.; Jiang, C.B.; Zhang, T.L. Effect of Fe on microstructure and coercivity of SmCo-based magnets. Acta Metall. Sin. 2017, 53, 726–732. [Google Scholar]
- Yu, N.J.; Gao, W.Y.; Pan, M.X.; Yang, H.F.; Wu, Q.; Zhang, P.Y.; Ge, H.L. Influence mechanism of Fe content on the magnetic properties of Sm2Co17-type sintered magnets: Microstructure and microchemistry. J. Alloys Compd. 2020, 818, 152908. [Google Scholar] [CrossRef]
- Duerrschnabel, M.; Yi, M.; Uestuener, K.; Liesegang, M.; Katter, M.; Kleebe, H.J.; Xu, B.; Gutfleisch, O.; Molina-Luna, L. Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets. Nat. Commun. 2017, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Ma, T.Y.; Zhou, X.L.; Ye, F.; Yuan, T.; Wang, J.D.; Yue, M.; Liu, F.; Ren, X.B. Atomic scale understanding of the defects process in concurrent recrystallization and precipitation of Sm-Co-Fe-Cu-Zr alloys. Acta Mater. 2021, 202, 290–301. [Google Scholar] [CrossRef]
- Jia, W.T.; Zhou, X.L.; Xiao, A.D.; Song, X.; Yuan, T.; Ma, T.Y. Defects-aggregated cell boundaries induced domain wall curvature change in Fe-rich Sm-Co-Fe-Cu-Zr permanent magnets. J. Mater. Sci. 2020, 55, 13258. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Hagiwara, M.; Endo, M.; Sanada, N.; Sakurada, S. Influence of intermediate-heat treatment on the structure and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnets. J. Appl. Phys. 2015, 117, 17C704. [Google Scholar] [CrossRef]
- Zhou, X.L.; Song, X.; Jia, W.T.; Xiao, A.D.; Yuan, T.; Ma, T.Y. Identifications of SmCo5 and Smn+1Co5n-1-type phases in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. Scr. Mater. 2020, 182, 1–5. [Google Scholar] [CrossRef]
- Yuan, T.; Song, X.; Zhou, X.L.; Jia, W.T.; Xiao, A.D.; Wang, J.D.; Ma, T.Y. Long term aging-induced microstructure and magnetic performance changes in Sm-Co-Fe-Cu-Zr magnets. Sci. Sin.-Phys. Mech. Astron. 2021, 51, 067518. (In Chinese) [Google Scholar] [CrossRef]
- Delannay, F.; Derkaoui, S.; Allibert, C.H. The influence of zirconium on Sm(CoFeCuZr)7.2 alloys for permanent magnets. I: Identification of the phases by transmission electron microscopy. J. Less-Comm. Met. 1987, 134, 249–262. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yue, M.; Wu, D.; Zhang, D.T.; Liu, W.Q.; Zhang, H.G. Microstructure modification induced giant coercivity enhancement in Sm(CoFeCuZr)z permanent magnets. Scr. Mater. 2018, 146, 231–235. [Google Scholar] [CrossRef]
- Yan, G.H.; Liu, Z.; Xia, W.X.; Zhang, C.Y.; Wang, G.Q.; Chen, R.J.; Lee, D.; Liu, J.P.; Yan, A.R. Grain boundary modification induced magnetization reversal process and giant coercivity enhancement in 2:17 type SmCo magnets. J. Alloys Compd. 2019, 785, 429–435. [Google Scholar] [CrossRef]
- Yan, G.H.; Xia, W.X.; Liu, Z.; Chen, R.J.; Zhang, C.Y.; Wang, G.Q.; Liu, J.P.; Yan, A.R. Effect of grain boundary on magnetization behaviors in 2:17 type SmCo magnet. J. Magn. Magn. Mater. 2019, 489, 165459. [Google Scholar] [CrossRef]
- Munzali, M.; Song, X.; Zhou, X.L.; Jia, W.T.; Yuan, T.; Ma, T.Y.; Ren, X.B. Grain boundary effect on the microstructure of solution-treated Fe-rich Sm-Co-Fe-Cu-Zr alloys. J. Alloys Compd. 2021, 853, 156974. [Google Scholar]
- Song, X.; Liu, Y.; Xiao, A.D.; Yuan, T.; Ma, T.Y. Cell-boundary-structure controlled magnetic-domain-wall-pinning in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. Mater. Charact. 2020, 169, 110575. [Google Scholar] [CrossRef]
- Ray, A.E. Metallurgical behavior of Sm(Co, Fe, Cu, Zr)z alloys. J. Appl. Phys. 1984, 55, 2094–2096. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, Z.; Li, M.; Liu, L.; Li, T.Y.; Chen, R.J.; Lee, D.; Yan, A.R. The evolution of phase constitution and microstructure in iron-rich 2:17-type Sm-Co magnets with high magnetic performance. Sci. Rep. 2018, 8, 9103. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhou, X.L.; Yuan, T.; Wang, J.D.; Yue, M.; Ma, T.Y. Role of the interfacial defects on magnetic properties of the 2:17-type Sm-Co permanent magnets. J. Alloys Compd. 2020, 816, 152620. [Google Scholar] [CrossRef]
- Xu, C.; Wang, H.; Liu, B.J.; Xu, H.; Zhang, T.L.; Liu, J.H.; Jiang, C.B. The formation mechanism of 1:5H phase in Sm(Co, Fe, Cu, Zr)z melt-spun ribbons with high iron content. J. Magn. Magn. Mater. 2020, 496, 165939. [Google Scholar] [CrossRef]
- Xue, Z.Q.; Liu, L.; Liu, Z.; Li, M.; Lee, D.; Chen, R.J.; Guo, Y.Q.; Yan, A.R. Mechanism of phase transformation in 2:17 type SmCo magnets investigated by phase stabilization. Scr. Mater. 2016, 113, 226–230. [Google Scholar] [CrossRef]
- Zhang, T.L.; Song, Q.; Wang, H.; Wang, J.M.; Liu, J.H.; Jiang, C.B. Effect of solution temperature and Cu content on the properties and microstructure of 2:17 type SmCo magnets. J. Alloys Compd. 2018, 735, 1971–1976. [Google Scholar] [CrossRef]
- Maury, C.; Rabenberg, L.; Allibert, C.H. Genesis of the cell microstructure in the Sm(Co, Fe, Cu, Zr) permanent magnets with 2: 17 type. Phys. Status Solidi A 1993, 140, 57–72. [Google Scholar] [CrossRef]
- Feng, H.B.; Chen, H.S.; Guo, Z.H.; Yu, R.H.; Li, W. Twinning structure in Sm(Co, Fe, Cu, Zr)z permanent magnet. Intermetallics 2010, 18, 1067–1071. [Google Scholar] [CrossRef]
- Stadelmaier, H.H.; Kronmüller, H.; Goll, D. Samarium-cobalt 2:17 magnets: Identifying Smn+1Co5n-1 phases stabilized by Zr. Scr. Mater. 2010, 63, 843–846. [Google Scholar] [CrossRef]
- Gutfleisch, O. High-Temperature Samarium Cobalt Permanent Magnets. In Nanoscale Magnetic Materials and Applications, 2nd ed.; Liu, J.P., Gutfleisch, O., Fullerton, E., Sellmyer, D., Eds.; Springer: New York, NY, USA, 2009; Volume 12, pp. 337–372. [Google Scholar]
- Stadelmaier, H.H.; Goll, D.; Kronmüller, H.; Metallkd, Z. Permanent magnet alloys based on Sm2Co17; phase evolution in the quinary system Sm-Zr-Fe-Co-Cu. Z. Met. 2005, 96, 17–23. [Google Scholar] [CrossRef]
- Yuan, T.; Song, X.; Zhou, X.L.; Jia, W.T.; Musa, M.; Wang, J.D.; Ma, T.Y. Role of primary Zr-rich particles on microstructure and magnetic properties of 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. J. Mater. Sci. Technol. 2020, 53, 73–81. [Google Scholar] [CrossRef]
- Seyring, M.; Song, X.Y.; Zhang, Z.X.; Rettenmayr, M. Concurrent ordering and phase transformation in SmCo7 nanograins. Nanoscale 2015, 7, 12126. [Google Scholar] [CrossRef] [PubMed]
- Rabenberg, L.; Mishra, R.K.; Thomas, G. Development of the cellular microstructure in the SmCo7.4-type magnets. In Proceedings of the 6th International Workshop on Rare Earth-Cobalt Permanent Magnets and Their Applications, Baden, Australia, 3 September 1982; Fidler, J., Ed.; Druckerei Lischkar & Co.: Vienna, Austria, 1982; pp. 599–608. [Google Scholar]
- Huang, K.; Marthinsen, K.; Zhao, Q.L.; Loge, R.E. The double-edge effect of second-phase particles on the recrystallization behavior and associated mechanical properties of metallic materials. Prog. Mater. Sci. 2018, 92, 284–359. [Google Scholar] [CrossRef]
- Derkaoui, S.; Valignat, N.; Allibert, C.H. Co corner of the system Sm-Co-Zr: Decomposition of the phase 1:7 and equilibria at 850 °C. J. Alloys Compd. 1996, 235, 112–119. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Chen, H.; Song, X.; Ma, T. Grain Boundary Evolution of Cellular Nanostructured Sm-Co Permanent Magnets. Materials 2021, 14, 5179. https://doi.org/10.3390/ma14185179
Zhang W, Chen H, Song X, Ma T. Grain Boundary Evolution of Cellular Nanostructured Sm-Co Permanent Magnets. Materials. 2021; 14(18):5179. https://doi.org/10.3390/ma14185179
Chicago/Turabian StyleZhang, Wei, Hongyu Chen, Xin Song, and Tianyu Ma. 2021. "Grain Boundary Evolution of Cellular Nanostructured Sm-Co Permanent Magnets" Materials 14, no. 18: 5179. https://doi.org/10.3390/ma14185179
APA StyleZhang, W., Chen, H., Song, X., & Ma, T. (2021). Grain Boundary Evolution of Cellular Nanostructured Sm-Co Permanent Magnets. Materials, 14(18), 5179. https://doi.org/10.3390/ma14185179