Influence of Silica Modulus and Curing Temperature on the Strength of Alkali-Activated Volcanic Ash and Limestone Powder Mortar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Based Materials Characterisation
2.1.1. Volcanic Ash Powder and Limestone Powder
2.1.2. Synthesis of Alkaline Activator
2.1.3. Aggregates
2.2. Experimental Program
2.2.1. Mix Design
2.2.2. Mortar Mixing, Placing and Curing
3. Result and Discussion
3.1. Physical and Mineralogy Characteristics of Base Materials
3.2. Effect of Silica Modulus on Workability of AANL
3.3. Effect of Silica Modulus on Compressive Strength Development
3.4. XRD Characterisation of Varied Silica Modulus on the Mortar Binder
3.5. FTIR Analysis of Silica Modulus Effect
3.6. SEM + EDX Characterisation of Silica Modulus Effect
3.7. Effect of Curing Temperature on Strength and Microstructures of Alkali-Activated Volcanic Ash and Limestone Powder
3.7.1. Effect of Curing Temperatures on Compressive Strength Development
3.7.2. XRD Characterisation of Varied Silica Modulus on the Mortar Binder
3.7.3. FTIR Analysis of Silica Modulus Effect
3.7.4. SEM + EDX Characterisation of Curing Temperature Effect
4. Conclusions
- The flow of the developed alkali-activated binder increases as silica modulus increased from zero to the optimum values of 0.89, and thereafter, a reduction in the workability was observed. All the flow values for all the developed binder were in an acceptable range of 135 mm to 220 mm;
- The maximum strength of 27 MPa was obtained with silica modulus of 0.89 after 28 days of curing; however, the compressive strength reduced sharply above the optimum silica modulus due to the presence of more SiO2 than Na2O in the mix;
- More than 70% of the 28-day compressive strength could be achieved within 12 h of curing with the usage of combined Na2SiO3(aq)/10 M NaOH at optimum Ms;
- Samples synthesised with sole 10 M NaOH(aq) activator resulted in a binder with a low 28-day compressive strength (15 MPa) compared to combined usage of Na2SiO3(aq)/10 M NaOH(aq) activators;
- Usage of only sodium hydroxide solution as activator resulted in the formation of main calcite (CaCO3), quartz (SiO2), anorthite (Na48Ca52(Si2.5Al1.5)O8 and kaolinite (Al2Si2O9H4). However, usage of combined sodium hydroxide solution and sodium silicate as activator resulted in the formation of anorthite (CaAl2Si2O8), gehlenite (CaO.Al2O3.SiO2) and albite (NaAlSi3O8) that enhanced the strength development;
- Usage of combined Na2SiO3(aq)/10 M NaOH(aq) at an optimum (Ms) of 0.81 enhanced microstructural densification of the product better than the usage of only NaOH(aq);
- Curing at low temperatures such as 25 °C and 45 °C hindered the geo-polymerisation process resulting in low 28-day compressive strength of 13 MPa and 14.13 MPa, respectively. In contrast, higher curing temperature positively enhanced strength development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Damme, H. Concrete material science: Past, present, and future innovations. Cem. Concr. Res. 2018, 112, 5–24. [Google Scholar] [CrossRef]
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef] [Green Version]
- CEMBUREAU. Activity Report 2018; The European Cement Association: Bruxelles, Belgium, 2018; pp. 22–24. [Google Scholar]
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef] [Green Version]
- Fang, G.; Ho, W.K.; Tu, W.; Zhang, M. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr. Build. Mater. 2018, 172, 476–487. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.L.; Brouwers, H.J.H. Properties of alkali activated slag-fly ash blends with limestone addition. Cem. Concr. Compos. 2015, 59, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Kühl, H. Slag Cement and Process of Making the Same. U.S. Patent US900939A, 13 October 1908. [Google Scholar]
- Purdon, A.O. The action of alkalis on blast furnace slag. J. Soc. Chem. Ind. 1940, 59, 191–202. [Google Scholar]
- Brough, A.R.; Atkinson, A. Sodium silicate-based, alkali-activated slag mortars—Part I. Strength, hydration and microstructure. Cem. Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F. Setting of alkali-activated slag cement. Influence of activator nature. Adv. Cem. Res. 2001, 13, 115–121. [Google Scholar] [CrossRef]
- Palacios, M.; Puertas, F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 2007, 37, 691–702. [Google Scholar] [CrossRef]
- Rashad, A.M. A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater. Des. 2014, 53, 1005–1025. [Google Scholar] [CrossRef]
- Bakharev, T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 2006, 36, 1134–1147. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr. Build. Mater. 2013, 47, 1201–1209. [Google Scholar] [CrossRef]
- Silva, G.; Castañeda, D.; Kim, S.; Castañeda, A.; Bertolotti, B.; Ortega-San-Martin, L.; Aguilar, R. Analysis of the production conditions of geopolymer matrices from natural pozzolan and recycled construction and demolition wastes. Constr. Build. Mater. 2019, 215, 633–643. [Google Scholar] [CrossRef]
- Firdous, R.; Stephan, D. Effect of silica modulus on the geopolymerization activity of natural pozzolans. Constr. Build. Mater. 2019, 219, 31–43. [Google Scholar] [CrossRef]
- Najimi, M.; Ghafoori, N.; Sharbaf, M. Alkali-activated natural pozzolan/slag mortars: A parametric study. Constr. Build. Mater. 2018, 164, 625–643. [Google Scholar] [CrossRef]
- Adewumi, A.A.; Ismail, M.; Ariffin, M.A.M.; Yusuf, M.O.; Salami, H.O.; Owolabi, T.O.; Maslehuddin, M. Empirical modelling of the compressive strength of an alkaline activated natural pozzolan and limestone powder mortar. Ceramics-Silikaty 2020, 64, 407–417. [Google Scholar] [CrossRef]
- Mageed, A.A.; AbdelHaffez, S. Utilization of Limestone Dust in Brick Making. J. Eng. Sci. 2012, 40, 913–922. [Google Scholar]
- Turgut, P. Limestone dust and glass powder wastes as new brick material. Mater. Struct. Constr. 2008, 41, 805–813. [Google Scholar] [CrossRef]
- Antoni, M.; Rossen, J.; Martirena, F.; Scrivener, K. Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 2012, 42, 1579–1589. [Google Scholar] [CrossRef]
- Tydlitát, V.; Matas, T.; Černý, R. Effect of w/c and temperature on the early-stage hydration heat development in Portland-limestone cement. Constr. Build. Mater. 2014, 50, 140–147. [Google Scholar] [CrossRef]
- Kakali, G.; Tsivilis, S.; Aggeli, E.; Bati, M. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res. 2000, 30, 1073–1077. [Google Scholar] [CrossRef]
- Yip, C.K.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. Carbonate mineral addition to metakaolin-based geopolymers. Cem. Concr. Compos. 2008, 30, 979–985. [Google Scholar] [CrossRef]
- Jang, J.G.; Lee, N.K.; Lee, H.K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Constr. Build. Mater. 2014, 50, 169–176. [Google Scholar] [CrossRef]
- Kubba, Z.; Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Asaad, M.A.; Ismail, M.; Tahir, M.M.; Mirza, J. Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Stud. Constr. Mater. 2018, 9, e00205. [Google Scholar] [CrossRef]
- Najimi, M.; Ghafoori, N. Engineering properties of natural pozzolan/slag based alkali-activated concrete. Constr. Build. Mater. 2019, 208, 46–62. [Google Scholar] [CrossRef]
- Ibrahim, M.; Johari, M.A.; Rahman, M.K.; Maslehuddin, M.; Dafalla, M.H. Effect of NaOH Molarity on the Strength and Microstructure of Natural Pozzolan-Based AAC. MATEC Web Conf. 2018, 203, 06017. [Google Scholar] [CrossRef]
- Samantasinghar, S.; Singh, S. Effects of curing environment on strength and microstructure of alkali-activated fly ash-slag binder. Constr. Build. Mater. 2020, 235, 117481. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K. Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. J. Mater. Sci. 2008, 43, 824–831. [Google Scholar] [CrossRef]
- Adam, A.A.; Horianto, X. The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia Eng. 2014, 95, 410–414. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. ASTM International. ASTM Standard C33, 2003. In Specification for Concrete Aggregates; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar] [CrossRef]
- Salami, B.A.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M.; Adewumi, A.A. Impact of Al(OH)3 addition to POFA on the compressive strength of POFA alkali-activated mortar. Constr. Build. Mater. 2018, 190, 65–82. [Google Scholar] [CrossRef]
- Adewumi, A.A.; Ariffin, M.A.M.; Yusuf, M.O.; Maslehuddin, M.; Ismail, M. Effect of sodium hydroxide concentration on strength and microstructure of alkali-activated natural pozzolan and limestone powder mortar. Constr. Build. Mater. 2021, 271, 121530. [Google Scholar] [CrossRef]
- Yusuf, M.O.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M. Influence of curing methods and concentration of NaOH on strength of the synthesized alkaline activated ground slag-ultrafine palm oil fuel ash mortar/concrete. Constr. Build. Mater. 2014, 66, 541–548. [Google Scholar] [CrossRef]
- Al-Sodani, K.A.A.; Adewumi, A.A.; Ariffin, M.A.M.; Maslehuddin, M.; Ismail, M.; Salami, H.O.; Owolabi, T.O.; Mohamed, H.D. Experimental and modelling of alkali-activated mortar compressive strength using hybrid support vector regression and genetic algorithm. Materials 2021, 14, 3049. [Google Scholar] [CrossRef]
- American Society of Testing Materials. Standard Specification for Portland Cement; ASTM International: West Conshohocken, PA, USA, 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Najamuddin, S.K.; Johari, M.A.M.; Maslehuddin, M.; Yusuf, M.O. Synthesis of low temperature cured alkaline activated silicomanganese fume mortar. Constr. Build. Mater. 2019, 200, 387–397. [Google Scholar] [CrossRef]
- Adewumi, A.A.; Ismail, M.; Ariffin, M.A.M.; Yusuf, M.O.; Maslehuddin, M.; Mohamed, H.D. Strength and microstructure of alkali-activated natural pozzolan and limestone powder mortar. Mag. Civ. Eng. 2019, 92, 36–47. [Google Scholar] [CrossRef]
Oxides Components (%) | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | Na2O | K2O | L.O.I |
---|---|---|---|---|---|---|---|---|
LSP | 94.1 | 2.5 | 0.8 | 1.2 | 0.6 | - | 0.3 | 44.0 |
VA | 2.0 | 74.0 | 13.0 | 1.5 | 0.5 | 4.0 | 5.0 | 5.0 |
Mix # | Mix ID. | VA | LSP | NH Molarity | SS/NH | SS | NH | Water | Fine Aggregate |
---|---|---|---|---|---|---|---|---|---|
M1 | AANLM0 | 242 | 363 | 10 | 0.0 | 0.0 | 303.0 | 60.5 | 1210 |
M2 | AANLM0.5 | 242 | 363 | 10 | 0.5 | 101.0 | 202.0 | 60.5 | 1210 |
M3 | AANLM0.75 | 242 | 363 | 10 | 0.75 | 129.9 | 173.1 | 60.5 | 1210 |
M4 | AANLM1.0 | 242 | 363 | 10 | 1.0 | 151.5 | 151.5 | 60.5 | 1210 |
M5 | AANLM1.25 | 242 | 363 | 10 | 1.25 | 168.3 | 134.7 | 60.5 | 1210 |
M6 | AANLM1.5 | 242 | 363 | 10 | 1.5 | 181.8 | 121.2 | 60.5 | 1210 |
Based Materials | LSP | VA |
---|---|---|
Specific gravity | 2.70 | 2.30 |
Mean diameter (µm) | 12.05 | 5.77 |
Specific surface area (cm2/g) | 0.60 | 3.10 |
d90 (µm) | 31.00 | 11.61 |
d50 (µm) | 6.43 | 4.84 |
d10 (µm) | 1.20 | 1.39 |
Mix # | Mix ID. | Total SiO2, (kg/m3) | Total Na2O (kg/m3) | Total H2O (kg/m3) | SiO2/Na2O | H2O/SiO2 | H2O/Na2O |
---|---|---|---|---|---|---|---|
M1 | AANLM0 | 0.00 | 72.35 | 291.15 | 0.00 | 4.02 | 0.00 |
M2 | AANLM0.5 | 29.42 | 57.08 | 277.00 | 0.52 | 4.85 | 9.41 |
M3 | AANLM0.75 | 37.83 | 52.72 | 272.95 | 0.72 | 5.18 | 7.22 |
M4 | AANLM1.0 | 44.13 | 49.45 | 269.92 | 0.89 | 5.46 | 6.12 |
M5 | AANLM1.25 | 49.03 | 46.90 | 267.56 | 1.05 | 5.70 | 5.46 |
M6 | AANLM1.5 | 52.96 | 44.87 | 265.68 | 1.18 | 5.92 | 5.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adewumi, A.A.; Mohd Ariffin, M.A.; Maslehuddin, M.; Yusuf, M.O.; Ismail, M.; Al-Sodani, K.A.A. Influence of Silica Modulus and Curing Temperature on the Strength of Alkali-Activated Volcanic Ash and Limestone Powder Mortar. Materials 2021, 14, 5204. https://doi.org/10.3390/ma14185204
Adewumi AA, Mohd Ariffin MA, Maslehuddin M, Yusuf MO, Ismail M, Al-Sodani KAA. Influence of Silica Modulus and Curing Temperature on the Strength of Alkali-Activated Volcanic Ash and Limestone Powder Mortar. Materials. 2021; 14(18):5204. https://doi.org/10.3390/ma14185204
Chicago/Turabian StyleAdewumi, Adeshina Adewale, Mohd Azreen Mohd Ariffin, Mohammed Maslehuddin, Moruf Olalekan Yusuf, Mohammad Ismail, and Khaled A. Alawi Al-Sodani. 2021. "Influence of Silica Modulus and Curing Temperature on the Strength of Alkali-Activated Volcanic Ash and Limestone Powder Mortar" Materials 14, no. 18: 5204. https://doi.org/10.3390/ma14185204
APA StyleAdewumi, A. A., Mohd Ariffin, M. A., Maslehuddin, M., Yusuf, M. O., Ismail, M., & Al-Sodani, K. A. A. (2021). Influence of Silica Modulus and Curing Temperature on the Strength of Alkali-Activated Volcanic Ash and Limestone Powder Mortar. Materials, 14(18), 5204. https://doi.org/10.3390/ma14185204