Initiation and Suppression of Crack Propagation during Magnesium Alloy Rolling
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Crack Propagation
3.2. Difference of Crack Propagation and Inhibition
3.2.1. Stress Distribution
3.2.2. Microstructure Evolution
3.2.3. Lattice Distortion
3.2.4. Dislocation
3.3. Plastic Deformation Mechanism of Crack Inhibition
3.3.1. Interaction of Twinning and Slip
3.3.2. Weaken Texture
3.3.3. Soften Orientation
3.4. Contribution of Crack Inhibition
4. Conclusions
- Crack propagation is due to the fact that conventional rolling will produce a large number of compressive twins and double twins under a large reduction in a single pass and cause a high degree of localization of the material strain, which becomes the nucleation point of microcracks, making the cracks spread along the twin lamellae and ends at the sheet where the dislocations accumulate. The structure of the sheet is unevenly distributed and exhibits hard orientation, which cannot coordinate strain and large plastic deformation, and the deformation energy and strain energy are released in the form of cracks.
- In addition to the single-pass thickness reduction of 50%, the sheet without cracks is compressed along with TD during rolling, the large deformation causes various types of slip. Since the rolling temperature is 673 K, <a + c> slip that can coordinate the c-axis strain is activated and will cause lattice distortion. The prefabricated tensile twins can weaken the basal texture and soften the grain orientation, which is conducive to better coordination of strain and crack suppression.
- A large number of dislocations are distributed in the matrix and the inside and outside the twins, making the twins shattered. The secondary twins are sheared and cannot develop into micro-cracks, avoiding the highly localized strain of the material. The deformation mechanism of dislocation shearing twins is an effective mechanism for crack inhibition, which can provide a theoretical basis for solving the problem of edge cracks in single-pass rolling with large thickness reduction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Declaration of Interest
References
- Jia, W.; Ma, L.; Jiao, M.; Le, Q.; Han, T.; Che, C. Fracture criterion for predicting edge-cracking in Hot rolling of twin-roll casted AZ31 Mg alloy. J. Mater. Res. Technol. 2020, 9, 4773–4787. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Wu, R.; Hou, L.; Zhang, M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloy 2018, 6, 277–291. [Google Scholar] [CrossRef]
- Vaughan, M.W.; Nasim, W.; Dogan, E.; Herrington, J.S.; Proust, G.; Benzerga, A.A.; Karaman, I. Interplay between the effects of deformation mechanisms and dynamic recrystallization on the failure of Mg-3Al-1Zn. Acta Mater. 2019, 168, 448–472. [Google Scholar] [CrossRef]
- Koike, J.; Kobayashi, T.; Mukai, T.; Watanabe, H.; Suzuki, M.; Maruyama, K.; Higashi, K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 2003, 51, 2055–2065. [Google Scholar] [CrossRef]
- Peláez, D.; Isaza, C.; Meza, J.M.; Fernández-Morales, P.; Misiolek, W.Z.; Mendoza, E. Mechanical and microstructural evolution of Mg AZ31 alloy using ECASD process. J. Mater. Res. Technol. 2015, 4, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Ning, F.; Zhou, X.; Le, Q.; Li, X.; Ma, L.; Jia, W. Investigation of microstructure and texture during continuous bending of rolled AZ31 sheet by experiment and FEM. J. Mater. Res. Technol. 2019, 8, 6232–6243. [Google Scholar] [CrossRef]
- Ahmad, R.; Yin, B.; Wu, Z.; Curtin, W.A. Designing high ductility in magnesium alloys. Acta Mater. 2019, 172, 161–184. [Google Scholar] [CrossRef]
- Zhang, D.-F.; Dai, Q.-W.; Fang, L.; Xu, X.-X. Prediction of edge cracks and plastic-damage analysis of Mg alloy sheet in rolling. Trans. Nonferr. Met. Soc. China 2011, 21, 1112–1117. [Google Scholar] [CrossRef]
- Chapuis, A.; Driver, J.H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater. 2011, 59, 1986–1994. [Google Scholar] [CrossRef]
- Zhi, C.; Ma, L.; Jia, W.; Huo, X.; Fan, Q.; Huang, Z.; Le, Q.; Lin, J. Dependence of deformation behaviors on temperature for twin-roll casted AZ31 alloy by processing maps. J. Mater. Res. Technol. 2019, 8, 5217–5232. [Google Scholar] [CrossRef]
- Pekguleryuz, M.; Celikin, M.; Hoseini, M.; Becerra, A.; Mackenzie, L. Study on edge cracking and texture evolution during 150 °C rolling of magnesium alloys: The effects of axial ratio and grain size. J. Alloy Compd. 2012, 510, 15–25. [Google Scholar] [CrossRef]
- Ferdowsi, M.R.G.; Mazinani, M.; Ebrahimi, G.R. Effects of hot rolling and inter-stage annealing on the microstructure and texture evolution in a partially homogenized AZ91 magnesium alloy. Mater. Sci. Eng. A 2014, 606, 214–227. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, Q.; Wei, J.; Ma, L.; Wu, D.; He, D. Inhibitory effects of prefabricated crown on edge crack of rolled AZ31 magnesium alloy plate. J. Mater. Process. Technol. 2017, 246, 85–92. [Google Scholar] [CrossRef]
- Jia, W.; Ma, L.; Le, Q.; Zhi, C.; Liu, P. Deformation and fracture behaviors of AZ31B Mg alloy at elevated temperature under uniaxial compression. J. Alloy Compd. 2019, 783, 863–876. [Google Scholar] [CrossRef]
- Tian, J.; Lu, H.; Zhang, W.; Nie, H.; Shi, Q.; Deng, J.; Liang, W.; Wang, L. An effective rolling process of magnesium alloys for suppressing edge cracks: Width-limited rolling. J. Magnes. Alloy 2021. [Google Scholar] [CrossRef]
- Al-Samman, T.; Gottstein, G. Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms. Mater. Sci. Eng. A 2008, 488, 406–414. [Google Scholar] [CrossRef]
- Barnett, M.R. Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Mater. Sci. Eng. A 2007, 464, 1–7. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Kohnert, A.A.; Tummala, H.; Lebensohn, R.A.; Tomé, C.N.; Capolungo, L. On the use of transmission electron microscopy to quantify dislocation densities in bulk metals. Scr. Mater. 2020, 178, 161–165. [Google Scholar] [CrossRef]
- Zhang, J.; Joshi, S.P. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids 2012, 60, 945–972. [Google Scholar] [CrossRef]
- Su, H.; Zhou, X.; Zheng, S.; Ye, H.; Yang, Z. Atomic-resolution studies on reactions between basal dislocations and 101¯2 coherent twin boundaries in a Mg alloy. J. Mater. Sci. Technol. 2021, 66, 28–35. [Google Scholar] [CrossRef]
- Sandlöbes, S.; Zaefferer, S.; Schestakow, I.; Yi, S.; Gonzalez-Martinez, R. On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys. Acta Mater. 2011, 59, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, L.C.; Denk, J.; Zickler, G.A.; Bourret, G.R.; Huber, O.; Saage, H.; Huesing, N.; Diwald, O. Microstructural investigation of twin-roll cast magnesium AZ31B subjected to a single monotonic compressive stress. J. Alloy Compd. 2019, 789, 1022–1034. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, M.; Wang, J.; Shi, B.; Jin, P. Effects of initial grain size and orientation on the twin behavior in ZK60 Mg alloy. Mater. Charact. 2020, 167, 110496. [Google Scholar] [CrossRef]
- Mokdad, F.; Chen, D.L.; Li, D.Y. Twin-twin interactions and contraction twin formation in an extruded magnesium alloy subjected to an alteration of compressive direction. J. Alloy Compd. 2018, 737, 549–560. [Google Scholar] [CrossRef]
- Xin, Y.; Zhou, X.; Lv, L.; Liu, Q. The influence of a secondary twin on the detwinning deformation of a primary twin in Mg–3Al–1Zn alloy. Mater. Sci. Eng. A 2014, 606, 81–91. [Google Scholar] [CrossRef]
- Yin, D.D.; Boehlert, C.J.; Long, L.J.; Huang, G.H.; Zhou, H.; Zheng, J.; Wang, Q.D. Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg–Y sheets. Int. J. Plast. 2021, 136, 102878. [Google Scholar] [CrossRef]
- Li, N.; Zhao, Z.B.; Zhu, S.X.; Zhou, T.Y.; Wang, Q.J.; Sun, H.; Liu, Y.H. Analysis of the active slip mode during compression of the near-α titanium alloy in the α + β phase-field: Insights from the results of electron backscattered diffraction. Mater. Lett. 2021, 288, 129363. [Google Scholar] [CrossRef]
- Qiao, H.; Guo, X.Q.; Hong, S.G.; Wu, P.D. Modeling of {10-12}-{10-12} secondary twinning in pre-compressed Mg alloy AZ31. J. Alloy Compd. 2017, 725, 96–107. [Google Scholar] [CrossRef]
- Lentz, M.; Coelho, R.S.; Camin, B.; Fahrenson, C.; Schaefer, N.; Selve, S.; Link, T.; Beyerlein, I.J.; Reimers, W. In-situ, ex-situ EBSD and (HR-)TEM analyses of primary, secondary and tertiary twin development in an Mg–4wt%Li alloy. Mater. Sci. Eng. A 2014, 610, 54–64. [Google Scholar] [CrossRef]
- Christian, J.W.; Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Mu, S.; Jonas, J.J.; Gottstein, G. Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy. Acta Mater. 2012, 60, 2043–2053. [Google Scholar] [CrossRef]
- Shi, Q.-X.; Wang, C.-J.; Deng, K.-K.; Nie, K.-B.; Cao, M.; Gan, W.-M.; Liang, W. Work hardening and softening behavior of pure Mg influenced by Zn addition investigated via in-situ neutron diffraction. Mater. Sci. Eng. A 2020, 772, 138827. [Google Scholar] [CrossRef]
- Shi, Q.-X.; Wang, C.-J.; Deng, K.-K.; Nie, K.-B.; Wu, Y.; Gan, W.-M.; Liang, W. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone. J. Mater. Sci. Technol. 2021, 60, 8–20. [Google Scholar] [CrossRef]
Material | Al | Zn | Mn | Cu | Si | Ni | Fe | Mg |
---|---|---|---|---|---|---|---|---|
AZ31 | 2.99 | 1.03 | 0.2 | 0.01 | 0.08 | 0.002 | 0.003 | Balance |
Sheet | Rolling Method | Rolling Temperature | Rolling Speed | Pass | Reduction per Pass |
---|---|---|---|---|---|
Sheet with cracks | Conventional rolling | 673 K | 10 rad/min | 1 | 50% |
Sheet without cracks | Limited width rolling | 673 K | 10 rad/min | 1 | 50% |
Density | Elongation | Young’s Modulus | Poisson Ration | Tensile Strength | Yield Strength |
---|---|---|---|---|---|
1780 kg/m3 | 16.4% | 52,479 MPa | 0.34 | 260 MPa | 87 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Shi, Q.-X.; Meng, L.-X.; Deng, J.-F.; Liang, W.; Ma, J.-Y. Initiation and Suppression of Crack Propagation during Magnesium Alloy Rolling. Materials 2021, 14, 5217. https://doi.org/10.3390/ma14185217
Tian J, Shi Q-X, Meng L-X, Deng J-F, Liang W, Ma J-Y. Initiation and Suppression of Crack Propagation during Magnesium Alloy Rolling. Materials. 2021; 14(18):5217. https://doi.org/10.3390/ma14185217
Chicago/Turabian StyleTian, Jing, Quan-Xin Shi, Li-Xin Meng, Jia-Fei Deng, Wei Liang, and Jin-Yao Ma. 2021. "Initiation and Suppression of Crack Propagation during Magnesium Alloy Rolling" Materials 14, no. 18: 5217. https://doi.org/10.3390/ma14185217
APA StyleTian, J., Shi, Q. -X., Meng, L. -X., Deng, J. -F., Liang, W., & Ma, J. -Y. (2021). Initiation and Suppression of Crack Propagation during Magnesium Alloy Rolling. Materials, 14(18), 5217. https://doi.org/10.3390/ma14185217