Two Luminescent Iridium Complexes with Phosphorous Ligands and Their Photophysical Comparison in Solution, Solid and Electrospun Fibers: Decreased Aggregation-Caused Emission Quenching by Steric Hindrance
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis of Ir(ppy)2(BPE) and Ir(ppy)2(TPP)
2.3. Preparation of Electrospun Fibers Doped with Ir(ppy)2(BPE) and Ir(ppy)2(TPP)
3. Results and Discussion
3.1. Characterization of Ir(ppy)2(BPE), Ir(ppy)2(TPP) and Their Doped Electrospun Fibers
3.1.1. Crystal Structure of Ir(ppy)2(BPE) and Ir(ppy)2(TPP)
3.1.2. SEM and Fluorescence Microscope Images of Ir(ppy)2(BPE)- and Ir(ppy)2(TPP)-Doped Electrospun Fibers
3.2. Photophysical Comparison of Ir(ppy)2(BPE) and Ir(ppy)2(TPP) in Solution, the Solid State, and Electrospun Fibers
3.2.1. Absorption and Excitation Spectra
3.2.2. Emission Spectra
3.2.3. Emission Lifetime and Quantum Yield
3.3. Confirmation of the Reduced Aggregation-Caused Quenching Effect: Mechanism Analysis
3.3.1. Eliminate the Possibility of the AIPE Effect
3.3.2. Analyze the Multiple Emissive Centers via DFT Calculation
3.3.3. Confirm the Potential Surface Crossing of the 3MLLCT Excited State via Temperature-Dependent Emission Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jo, J.; Lee, H.Y.; Liu, W.J.; Olasz, A.; Chen, C.-H.; Lee, D. Reactivity-Based Detection of Copper(II) Ion in Water: Oxidative Cyclization of Azoaromatics as Fluorescence Turn-On Signaling Mechanism. J. Am. Chem. Soc. 2012, 134, 16000–16007. [Google Scholar] [CrossRef] [PubMed]
- Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev. 2010, 39, 3936–3953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boens, N.; Leen, V.; Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.M.; Wu, W.H.; Wu, W.T.; Song, P.; Han, K.L.; Wang, Z.G.; Liu, S.S.; Guo, H.M.; Zhao, J.Z. Tuning the luminescence lifetimes of ruthenium(ii) polypyridine complexes and its application in luminescent oxygen sensing. J. Mater. Chem. 2010, 20, 1953–1963. [Google Scholar] [CrossRef]
- Yang, X.D.; Shen, B.W.; Jiang, Y.N.; Zhao, Z.X.; Wang, C.X.; Ma, C.; Yang, B.; Lin, Q. A novel fluorescent polymer brushes film as a device for ultrasensitive detection of TNT. J. Mater. Chem. A 2013, 1, 1201–1206. [Google Scholar] [CrossRef]
- Hargrove, A.E.; Nieto, S.; Zhang, T.; Sessler, J.L.; Anslyn, E.V. Artificial Receptors for the Recognition of Phosphorylated Molecules. Chem. Rev. 2011, 111, 6603–6782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQuade, D.T.; Pullen, A.E.; Swager, T.M. Conjugated Polymer-Based Chemical Sensors. Chem. Rev. 2000, 100, 2537–2574. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.-H.; Chen, J.X.; Liu, Q.S.; Wark, S.E.; Son, D.H.; Batteas, J.D. Ultrasensitive Copper(II) Detection Using Plasmon-Enhanced and Photo-Brightened Luminescence of CdSe Quantum Dots. Anal. Chem. 2010, 82, 3671–3678. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.R.; Velusamy, M.; Lin, J.T.; Chien, C.H.; Tao, Y.T.; Wen, Y.S.; Hu, Y.H.; Chou, P.T. Efficient red-emitting cyclometalated iridium (III) complexes containing lepidine-based ligands. Inorg. Chem. 2005, 44, 5677–5685. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.; Shi, L.; Li, W. Synthesis, structures, and photophysical properties of fluorine-functionalized yellow-emitting iridium complexes. Opt. Mater. 2009, 31, 905. [Google Scholar] [CrossRef]
- Yang, L.; Okuda, F.; Kobayashi, K.; Nozaki, K.; Tanabe, Y.; Ishii, Y.; Haga, M.A. Syntheses and phosphorescent properties of blue emissive iridium complexes with tridentate pyrazolyl ligands. Inorg. Chem. 2008, 47, 7154–7165. [Google Scholar] [CrossRef]
- Constable, E.C.; Housecroft, C.E.; Schonhofer, E.; Schonle, J.; Zampese, J.A. Softening the donor set for light-emitting electrochemical cells:[Ir (ppy) 2 (N^ N)]+,[Ir (ppy) 2 (P^ P)]+ and [Ir (ppy) 2 (P^ S)]+ salts. Polyhedron 2012, 35, 154–160. [Google Scholar] [CrossRef]
- Luo, S.X.; Wei, L.; Zhang, X.H.; Lim, M.H.; Lin, K.X.V.; Yeo, M.H.V.; Zhang, W.H.; Liu, Z.P.; Young, D.J.; Hor, T.S.A. Enhanced Emission and Analyte Sensing by Cinchonine Iridium(III) Cyclometalated Complexes Bearing Bent Diphosphine Chelators. Organometallics 2013, 32, 2908–2917. [Google Scholar] [CrossRef]
- Martie, D.R.; Bansal, A.K.; Mascio, V.D.; Cordes, D.B.; Henwood, A.F.; Slawin, A.M.Z.; Kamer, P.C.J.; Martinez-Sarti, L.; Pertegas, A.; Bolink, H.J.; et al. Enhancing the photoluminescence quantum yields of blue-emitting cationic iridium (III) complexes bearing bisphosphine ligands. Inorg. Chem. Front. 2016, 3, 218–235. [Google Scholar]
- Wang, Y.; Teng, F.; Tang, A.; Wang, Y.; Xu, X. Chlorobis [2-(2-pyridyl) phenyl-κ2N, C1](triphenylphosphine-κP) iridium (III) dichloromethane sesquisolvate. Acta Cryst. 2005, E61, m778–m780. [Google Scholar] [CrossRef]
- Shen, X.; Wang, F.L.; Sun, F.; Zhao, R.; Wang, X.; Jing, S.; Xu, Y.; Zhu, D.R. New 2-phenyl-5-nitropyridyl containing iridium (III) cyclometalated complexes: Syntheses, structures, electrochemistry and photophysical properties. Inorg. Chem. Commun. 2011, 14, 1511–1515. [Google Scholar] [CrossRef]
- Kranenburg, M.; van der Brugt, Y.E.M.; Kamer, P.C.J.; van Leeuwen, P.W.N.M. New diphosphine ligands based on heterocyclic aromatics inducing very high regioselectivity in rhodium-catalyzed hydroformylation: Effect of the bite angle. Organometallics 1995, 14, 3081–3089. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Zhou, Y.L.; Zheng, Z.Z.; Yue, X.L.; Dai, Z.F.; Liu, S.Q.; Tang, Z.Y. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 2009, 11, 6580–6586. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, W.; Liao, M.Y.; Bando, Y.; Golberg, D. Recent advances in solution-processed inorganic nanofilm photodetectors. Chem. Soc. Rev. 2014, 43, 1400–1422. [Google Scholar] [CrossRef] [PubMed]
- Grosso, D. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 2011, 21, 17033–17038. [Google Scholar] [CrossRef]
- Liu, C.; Song, X.L.; Rao, X.F.; Xing, Y.; Wang, Z.G.; Zhao, J.Z.; Qiu, J.S. Novel triphenylamine-based cyclometalated platinum (II) complexes for efficient luminescent oxygen sensing. Dye. Pigment 2014, 101, 85–92. [Google Scholar] [CrossRef]
- Guan, W.; Zhou, W.; Lu, J.; Lu, C. Luminescent films for chemo- and biosensing. Chem. Soc. Rev. 2015, 44, 6981–7009. [Google Scholar] [CrossRef]
Ir(ppy)2(BPE) | Ir(ppy)2(TPP) | ||||||
---|---|---|---|---|---|---|---|
Bond Length | (Å) | Bond Angle | (°) | Bond Length | (Å) | Bond Angle | (°) |
Ir-N1 | 2.08 | N1-Ir-C1 | 79.56 | Ir-N1 | 2.07 | N1-Ir-C1 | 80.59 |
Ir-C1 | 2.05 | N2-Ir-C2 | 79.39 | Ir-C1 | 2.03 | N2-Ir-C2 | 79.71 |
Ir-N2 | 2.09 | P1-Ir-P2 | 99.22 | Ir-N2 | 2.07 | Cl1-Ir-P1 | 90.77 |
Ir-C2 | 2.04 | N1-Ir-P1 | 98.63 | Ir-C2 | 2.03 | N1-Ir-P1 | 97.41 |
Ir-P1 | 2.48 | N1-Ir-P2 | 92.99 | Ir-P1 | 2.48 | N1-Ir-C2 | 86.64 |
Ir-P2 | 2.54 | N2-Ir-P1 | 88.61 | Ir-Cl1 | 2.50 | N2-Ir-Cl1 | 90.43 |
Ir…O | 3.49 | N2-Ir-P2 | 98.22 | Ir…O | N/A | N2-Ir-P1 | 99.88 |
cell-a | 11.85 | cell-α | 90.00 | cell-a | 9.88 | cell-α | 90.00 |
cell-b | 14.25 | cell-β | 90.00 | cell-b | 14.94 | cell-β | 90.00 |
cell-c | 31.21 | cell-γ | 93.58 | cell-c | 22.58 | cell-γ | 100.87 |
Ir(ppy)2(BPE) | Ir(ppy)2(TPP) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Status | λabs (nm) | λedg (nm) | λem (nm) | τ (μs) | Φ | kr/knr (×105 s−1) | λabs (nm) | λedg (nm) | λem (nm) | τ (μs) | Φ | kr/knr (×105 s−1) |
solution | 239, 319, 369 | 404 | 411, 460, 506, 525 | τ1 = 0.39 | 0.43 | 7.54/10.01 | 237, 318, 367 | 409 | 488 | τ1 = 0.02 | 0.01 | 0.345/34.14 |
τ2 = 0.53 | τ2 = 0.24 | |||||||||||
τ3 = 0.66 | τ3 = 0.44 | |||||||||||
τ = 0.57 | τ = 0.29 | |||||||||||
solid | a | a | 410, 466, 496 | τ1 = 0.39 | 0.27 | 6.28/16.98 | a | a | b | b | b | N/A |
τ2 = 0.41 | ||||||||||||
τ3 = 0.58 | ||||||||||||
τ = 0.43 | ||||||||||||
PVP, 5% | 216, 257, 311,433 | 510 | 408, 458, 488 | 0.71 | 0.52 | 7.32/6.76 | 260, 310, ~425 | 512 | 448, 482, 508 | 0.33 | 0.04 | 1.21/29.09 |
PVP, 10% | 215, 258, 310, 433 | 511 | 409, 460, 489 | 0.87 | 0.55 | 6.32/5.17 | 260, 310, ~425 | 513 | 451, 485, 508 | 0.61 | 0.08 | 1.31/15.08 |
PVP, 15% | 217, 258, 312, 435 | 511 | 409, 461, 491 | 0.83 | 0.53 | 6.38/5.66 | 261, 310, ~425 | 513 | ~452, 485, 509 | 0.66 | 0.08 | 1.21/13.94 |
MO/Transition | Composition (%) | ||
---|---|---|---|
Ir | ppy | BPE | |
161 (LUMO+1) | 7.1 | 71.3 | 21.6 |
160 (LUMO) | 5.2 | 77.7 | 13.5 |
159 (HOMO) | 40.9 | 39.5 | 19.7 |
158 (HOMO-1) | 10.7 | 69.8 | 18.1 |
157 (HOMO-2) | 22.3 | 57.5 | 18.2 |
156 (HOMO-3) | 14.3 | 63.1 | 22.0 |
S0 → S1 | MLLCT | MO159 → 160 (95.3) | |
S0 → S2 | MLLCT | MO159 → 161 (96.6) | |
S0 → S3 | MLLCT | MO158 → 160 (92.3) | |
S0 → S4 | MLLCT | MO158 → 161 (87.6) | |
S0 → T1 | MLLCT | MO157 → 160 (35.3)/158 → 160 (23.3)/159 → 160 (18.1) | |
S0 → T2 | MLLCT | MO159 → 161 (41.3)/156 → 161 (16.5)/158 → 161 (15.3) | |
S0 → T3 | MLLCT | MO159 → 160 (54.5)/157 → 160 (26.1) | |
S0 → T4 | MLLCT | MO159 → 161 (47.7)/156 → 161 (26.1) |
MO/Transition | Composition (%) | ||
---|---|---|---|
Ir | ppy | TPP | |
117 (LUMO+1) | 11.0 | 84.2 | 3.8 |
116 (LUMO) | 4.7 | 85.9 | 9.7 |
115 (HOMO) | 41.0 | 35.1 | 5.8 |
114 (HOMO-1) | 43.4 | 27.3 | 12.8 |
113 (HOMO-2) | 38.4 | 43.8 | 11.1 |
112 (HOMO-3) | 8.8 | 44.1 | 25.3 |
S0 → S1 | MLLCT | MO115 → 116 (91.1) | |
S0 → S2 | MLLCT | MO114 → 116 (87.1)/113 → 116 (9.9) | |
S0 → S3 | MLLCT | MO115 → 117 (95.9) | |
S0 → S4 | MLLCT | MO114 → 117 (65.4)/113 → 116 (27.7) | |
S0 → T1 | MLLCT | MO114 → 116 (35.3)/115 → 116 (35.9) | |
S0 → T2 | MLLCT | MO115 → 117 (58.6)/112 → 117 (9.0) | |
S0 → T3 | MLLCT | MO115 → 116 (50.2)/114 → 116 (37.9) | |
S0 → T4 | MLLCT | MO113 → 116 (85.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Li, B. Two Luminescent Iridium Complexes with Phosphorous Ligands and Their Photophysical Comparison in Solution, Solid and Electrospun Fibers: Decreased Aggregation-Caused Emission Quenching by Steric Hindrance. Materials 2021, 14, 5419. https://doi.org/10.3390/ma14185419
Huang C, Li B. Two Luminescent Iridium Complexes with Phosphorous Ligands and Their Photophysical Comparison in Solution, Solid and Electrospun Fibers: Decreased Aggregation-Caused Emission Quenching by Steric Hindrance. Materials. 2021; 14(18):5419. https://doi.org/10.3390/ma14185419
Chicago/Turabian StyleHuang, Chaohui, and Bin Li. 2021. "Two Luminescent Iridium Complexes with Phosphorous Ligands and Their Photophysical Comparison in Solution, Solid and Electrospun Fibers: Decreased Aggregation-Caused Emission Quenching by Steric Hindrance" Materials 14, no. 18: 5419. https://doi.org/10.3390/ma14185419
APA StyleHuang, C., & Li, B. (2021). Two Luminescent Iridium Complexes with Phosphorous Ligands and Their Photophysical Comparison in Solution, Solid and Electrospun Fibers: Decreased Aggregation-Caused Emission Quenching by Steric Hindrance. Materials, 14(18), 5419. https://doi.org/10.3390/ma14185419