Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent Preparation and Characterization
2.2. Phosphate Adsorption in a Fixed Bed Column
2.3. Theory and Column Data Evaluation
2.4. Theoretical Breakthrough-Curve Models
3. Results and Discussions
3.1. Adsorbent Characterization
3.2. Effects of Operational Parameters
3.2.1. Effects of Adsorbent Bed Height
3.2.2. Effects of Influent Concentrations
3.2.3. Effects of Influent Flow Rate
3.3. Prediction of Breakthrough Curves Using Adsorption Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagoya, S.; Nakamichi, S.; Kawase, Y. Mechanisms of Phosphate Removal from Aqueous Solution by Zero-Valent Iron: A Novel Kinetic Model for Electrostatic Adsorption, Surface Complexation and Precipitation of Phosphate under Oxic Conditions. Sep. Purif. Technol. 2019, 218, 120–129. [Google Scholar] [CrossRef]
- Ajmal, Z.; Muhmood, A.; Usman, M.; Kizito, S.; Lu, J.; Dong, R.; Wu, S. Phosphate Removal from Aqueous Solution Using Iron Oxides: Adsorption, Desorption and Regeneration Characteristics. J. Colloid Interface Sci. 2018, 525, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, S.; Razali, N.A.; Yatim, N.I.; Alias, M.; Ali, A.; Zaini, N.S.; Abuhabib, A.A.M. Characterisation and Performance of Thermally Treated Rice Husk as Efficient Adsorbent for Phosphate Removal. J. Water Supply Res. Technol.-AQUA 2018, 67, 766–778. [Google Scholar] [CrossRef]
- Sellner, B.M.; Hua, G.; Ahiablame, L.M. Fixed Bed Column Evaluation of Phosphate Adsorption and Recovery from Aqueous Solutions Using Recycled Steel Byproducts. J. Environ. Manag. 2019, 233, 595–602. [Google Scholar] [CrossRef]
- Biswas, B.K.; Inoue, K.; Ghimire, K.N.; Harada, H.; Ohto, K.; Kawakita, H. Removal and Recovery of Phosphorus from Water by Means of Adsorption onto Orange Waste Gel Loaded with Zirconium. Bioresour. Technol. 2008, 99, 8685–8690. [Google Scholar] [CrossRef]
- Khan, S.; Ishaq, M.; Ahmad, I.; Hussain, S.; Ullah, H. Evaluation of Coal as Adsorbent for Phosphate Removal. Arab. J. Geosci. 2013, 6, 1113–1117. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kim, Y.; Choi, Y. Magnetite Synthesis Using Iron Oxide Waste and Its Application for Phosphate Adsorption with Column and Batch Reactors. Chem. Eng. Res. Des. 2019, 148, 169–179. [Google Scholar] [CrossRef]
- Lin, K.Y.A.; Chen, S.Y.; Jochems, A.P. Zirconium-Based Metal Organic Frameworks: Highly Selective Adsorbents for Removal of Phosphate from Water and Urine. Mater. Chem. Phys. 2015, 160, 168–176. [Google Scholar] [CrossRef]
- Hu, A.; Ren, G.; Che, J.; Guo, Y.; Ye, J.; Zhou, S. Phosphate Recovery with Granular Acid-Activated Neutralized Red Mud: Fixed-Bed Column Performance and Breakthrough Curve Modelling. J. Environ. Sci. 2020, 90, 78–86. [Google Scholar] [CrossRef]
- Ramirez, A.; Giraldo, S.; García-Nunez, J.; Flórez, E.; Acelas, N. Phosphate Removal from Water Using a Hybrid Material in a Fixed-Bed Column. J. Water Process. Eng. 2018, 26, 131–137. [Google Scholar] [CrossRef]
- Zhang, L.; Wan, L.; Chang, N.; Liu, J.; Duan, C.; Zhou, Q.; Li, X.; Wang, X. Removal of Phosphate from Water by Activated Carbon Fiber Loaded with Lanthanum Oxide. J. Hazard. Mater. 2011, 190, 848–855. [Google Scholar] [CrossRef]
- Đuričić, T.; Malinović, B.N.; Bijelić, D. The Phosphate Removal Efficiency Electrocoagulation Wastewater Using Iron and Aluminum Electrodes. Bull. Chem. Technol. Bosnia Herzeg. 2016, 47, 33–38. [Google Scholar]
- Qiu, B.; Duan, F. Synthesis of Industrial Solid Wastes/Biochar Composites and Their Use for Adsorption of Phosphate: From Surface Properties to Sorption Mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2019, 571, 86–93. [Google Scholar] [CrossRef]
- Wang, S.; Kong, L.; Long, J.; Su, M.; Diao, Z.; Chang, X.; Chen, D.; Song, G.; Shih, K. Adsorption of Phosphorus by Calcium-Flour Biochar: Isotherm, Kinetic and Transformation Studies. Chemosphere 2018, 195, 666–672. [Google Scholar] [CrossRef]
- Ye, Y.; Jiao, J.; Kang, D.; Jiang, W.; Kang, J.; Ngo, H.H.; Guo, W.; Liu, Y. The Adsorption of Phosphate Using a Magnesia–Pullulan Composite: Kinetics, Equilibrium, and Column Tests. Environ. Sci. Pollut. Res. 2019, 26, 13299–13310. [Google Scholar] [CrossRef]
- Castro, D.; Rosas-Laverde, N.M.; Aldás, M.B.; Almeida-Naranjo, C.E.; Guerrero, V.H.; Pruna, A.I. Chemical Modification of Agro-Industrial Waste-Based Bioadsorbents for Enhanced Removal of Zn(Ii) Ions from Aqueous Solutions. Materials 2021, 14, 2134. [Google Scholar] [CrossRef]
- Bezza, F.A.; Chirwa, E.M.N. Removal of Phosphate from Contaminated Water Using Activated Carbon Supported Nanoscale Zero-Valent Iron (NZVI) Particles. Chem. Eng. Trans. 2021, 84, 55–60. [Google Scholar] [CrossRef]
- Rout, P.R.; Dash, R.R.; Bhunia, P. Modelling and Packed Bed Column Studies on Adsorptive Removal of Phosphate from Aqueous Solutions by a Mixture of Ground Burnt Patties and Red Soil. Adv. Environ. Res. 2014, 3, 231–251. [Google Scholar] [CrossRef] [Green Version]
- Woumfo, E.D.; Siéwé, J.M.; Njopwouo, D. A Fixed-Bed Column for Phosphate Removal from Aqueous Solutions Using an Andosol-Bagasse Mixture. J. Environ. Manag. 2015, 151, 450–460. [Google Scholar] [CrossRef]
- Jung, K.W.; Jeong, T.U.; Choi, J.W.; Ahn, K.H.; Lee, S.H. Adsorption of Phosphate from Aqueous Solution Using Electrochemically Modified Biochar Calcium-Alginate Beads: Batch and Fixed-Bed Column Performance. Bioresour. Technol. 2017, 244, 23–32. [Google Scholar] [CrossRef]
- Andre, Y.; Barca, C.; Ge, C.; Meyer, D.; Chazarenc, F.; Andrès, Y. Phosphate Removal from Synthetic and Real Wastewater Using Steel Slags Produced in Europe. Water Res. 2012, 26, 2376–2384. [Google Scholar] [CrossRef]
- Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Adsorptive Removal of Phosphate from Aqueous Solutions Using Low-Cost Volcanic Rocks: Kinetics and Equilibrium Approaches. Materials 2021, 14, 1312. [Google Scholar] [CrossRef]
- Beji, R.; Hamdi, W.; Kesraoui, A.; Seffen, M. Adsorption of Phosphorus by Alkaline Tunisian Soil in a Fixed Bed Column. Water Sci. Technol. 2018, 78, 751–763. [Google Scholar] [CrossRef]
- Cui, X.; Li, H.; Yao, Z.; Shen, Y.; He, Z.; Yang, X.; Ng, H.Y.; Wang, C.H. Removal of Nitrate and Phosphate by Chitosan Composited Beads Derived from Crude Oil Refinery Waste: Sorption and Cost-Benefit Analysis. J. Clean. Prod. 2019, 207, 846–856. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.Q.; Babatunde, A.O.; Wang, L.; Ren, Y.X.; Han, Y. Characteristics and Mechanisms of Phosphate Adsorption on Dewatered Alum Sludge. Sep. Purif. Technol. 2006, 51, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Hou, H.; Zhu, S. Characteristics and Mechanisms of Phosphate Adsorption onto Basic Oxygen Furnace Slag. J. Hazard. Mater. 2009, 162, 973–980. [Google Scholar] [CrossRef]
- William, G.; Eren, Y.; Ayd, S.; Emik, S.; Tuba, A.; Osra, F.; Wasswa, J. A Facile Polymerisation of Magnetic Coal to Enhanced Phosphate Removal from Solution. J. Environ. Manag. 2019, 247, 356–362. [Google Scholar] [CrossRef]
- Huang, Y.; Lee, X.; Grattieri, M.; Macazo, F.C.; Cai, R.; Minteer, S.D. A Sustainable Adsorbent for Phosphate Removal: Modifying Multi-Walled Carbon Nanotubes with Chitosan. J. Mater. Sci. 2018, 53, 12641–12649. [Google Scholar] [CrossRef]
- Zhang, W.; Bu, A.; Ji, Q.; Min, L.; Zhao, S.; Wang, Y.; Chen, J. P Ka-Directed Incorporation of Phosphonates into Mof-808 via Ligand Exchange: Stability and Adsorption Properties for Uranium. ACS Appl. Mater. Interfaces 2019, 11, 33931–33940. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.W.; Jeong, T.U.; Choi, B.H.; Jeong Kang, H.; Ahn, K.H. Phosphate Adsorption from Aqueous Solution by Laminaria Japonica-Derived Biochar-Calcium Alginate Beads in a Fixed-Bed Column: Experiments and Prediction of Breakthrough Curves. Environ. Prog. Sustain. Energy 2017, 33, 1–9. [Google Scholar] [CrossRef]
- Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Removal of Phosphate Ions from Aqueous Solutions by Adsorption onto Leftover Coal. Water 2020, 12, 1381. [Google Scholar] [CrossRef]
- Negrea, A.; Mihailescu, M.; Mosoarca, G.; Ciopec, M.; Duteanu, N.; Negrea, P.; Minzatu, V. Estimation on Fixed-Bed Column Parameters of Breakthrough Behaviors for Gold Recovery by Adsorption onto Modified/Functionalized Amberlite Xad7. Int. J. Environ. Res. Public Health 2020, 17, 6868. [Google Scholar] [CrossRef] [PubMed]
- Nuryadin, A.; Imai, T. Application of Amorphous Zirconium (Hydr)Oxide/MgFe Layered Double Hydroxides Composite in Fixed-Bed Column for Phosphate Removal from Water. Glob. J. Environ. Sci. Manag. 2021, 7, 485–502. [Google Scholar] [CrossRef]
- Rao, R.A.K.; Rehman, F.; Kashifuddin, M. Removal of Cr(VI) from Electroplating Wastewater Using Fruit Peel of Leechi (Litchi Chinensis). Desalin. Water Treat. 2012, 49, 136–146. [Google Scholar] [CrossRef]
- Jiang, D.; Chu, B.; Amano, Y.; Machida, M. Removal and Recovery of Phosphate from Water by Mg-Laden Biochar: Batch and Column Studies. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 429–437. [Google Scholar] [CrossRef]
- Alemu, A.; Lemma, B.; Gabbiye, N.; Tadele, M.; Teferi, M. Removal of Chromium (VI) from Aqueous Solution Using Vesicular Basalt: A Potential Low Cost Wastewater Treatment System. Heliyon 2018, 4, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kilpimaa, S.; Runtti, H.; Kangas, T.; Lassi, U.; Kuokkanen, T. Physical Activation of Carbon Residue from Biomass Gasification: Novel Sorbent for the Removal of Phosphates and Nitrates from Aqueous Solution. J. Ind. Eng. Chem. 2014, 21, 1354–1364. [Google Scholar] [CrossRef]
- Lee, C.G.; Kim, J.H.; Kang, J.K.; Kim, S.B.; Park, S.J.; Lee, S.H.; Choi, J.W. Comparative Analysis of Fixed-Bed Sorption Models Using Phosphate Breakthrough Curves in Slag Filter Media. Desalin. Water Treat. 2015, 55, 1–11. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Abbas, M.N.; Abudi, Z.N.; Alminshid, A.H. Adsorption of Thallium Ion (Tl+3) from Aqueous Solutions by Rice Husk in a Fixed-Bed Column: Experiment and Prediction of Breakthrough Curves. Environ. Technol. Innov. 2018, 12, 1–13. [Google Scholar] [CrossRef]
- Lalley, J.; Han, C.; Li, X.; Dionysiou, D.D.; Nadagouda, M.N. Phosphate Adsorption Using Modified Iron Oxide-Based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests. Chem. Eng. J. 2016, 284, 1386–1396. [Google Scholar] [CrossRef]
- Husein, D.Z.; Al-Radadi, T.; Danish, E.Y. Adsorption of Phosphate Using Alginate-/Zirconium-Grafted Newspaper Pellets: Fixed-Bed Column Study and Application. Arab. J. Sci. Eng. 2017, 42, 1399–1412. [Google Scholar] [CrossRef]
- Vieira, M.L.G.; Pinheiro, C.P.; Silva, K.A.; Lutke, S.F.; Cadaval, T.R.S.A.; Dotto, G.; Pinto, L.A.d.A. Chitosan and Cyanoguanidine-Crosslinked Chitosan Coated Glass Beads and Its Application in Fixed Bed Adsorption. Chem. Eng. Commun. 2019, 206, 1474–1486. [Google Scholar] [CrossRef]
- Geleta, W.S.; Alemayehu, E.; Lennartz, B. Volcanic Rock Materials for Defluoridation Ofwater in Fixed-Bed Column Systems. Molecules 2021, 26, 977. [Google Scholar] [CrossRef]
- Golie, W.M.; Upadhyayula, S. Continuous Fixed-Bed Column Study for the Removal of Nitrate from Water Using Chitosan/Alumina Composite. J. Water Process. Eng. 2016, 12, 58–65. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Fixed-Bed Dynamic Column Adsorption Study of Methylene Blue (MB) onto Pine Cone. Desalin. Water Treat. 2015, 55, 1–14. [Google Scholar] [CrossRef]
- Nunes, K.G.P.; Batistel, N.R.; Barbosa, D.; Rosa, I.R.; Davila, I.V.J.; Féris, L.A. Adsorption of Hexavalent Chromium on a Coal Beneficiation Tailing Material in Batch and Fixed-Bed Column. Acta Bras. 2020, 4, 121–127. [Google Scholar] [CrossRef]
- Tamez Uddin, M.; Rukanuzzaman, M.; Maksudur Rahman Khan, M.; Akhtarul Islam, M. Adsorption of Methylene Blue from Aqueous Solution by Jackfruit (Artocarpus heteropyllus) Leaf Powder: A Fixed-Bed Column Study. J. Environ. Manag. 2009, 90, 3443–3450. [Google Scholar] [CrossRef]
- Li, N.; Ren, J.; Zhao, L.; Wang, Z.L. Fixed Bed Adsorption Study on Phosphate Removal Using Nanosized FeOOH-Modified Anion Resin. J. Nanomater. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Foo, K.Y.; Lee, L.K.; Hameed, B.H. Preparation of Tamarind Fruit Seed Activated Carbon by Microwave Heating for the Adsorptive Treatment of Landfill Leachate: A Laboratory Column Evaluation. Bioresour. Technol. 2013, 133, 599–605. [Google Scholar] [CrossRef]
- Chu, K.H. Breakthrough Curve Analysis by Simplistic Models of Fixed Bed Adsorption: In Defense of the Century-Old Bohart-Adams Model. Chem. Eng. J. 2020, 380, 122513. [Google Scholar] [CrossRef]
- Han, R.; Ding, D.; Xu, Y.; Zou, W.; Wang, Y.; Li, Y.; Zou, L. Use of Rice Husk for the Adsorption of Congo Red from Aqueous Solution in Column Mode. Bioresour. Technol. 2008, 99, 2938–2946. [Google Scholar] [CrossRef] [PubMed]
- Aksu, Z.; Gönen, F. Biosorption of Phenol by Immobilized Activated Sludge in a Continuous Packed Bed: Prediction of Breakthrough Curves. Process. Biochem. 2004, 39, 599–613. [Google Scholar] [CrossRef]
- Huang, Y.; Lee, X.; Grattieri, M.; Yuan, M.; Cai, R.; Macazo, F.C.; Minteer, S.D. Modified Biochar for Phosphate Adsorption in Environmentally Relevant Conditions. Chem. Eng. J. 2020, 380, 122375. [Google Scholar] [CrossRef]
- Li, N.; Bai, R. A Novel Amine-Shielded Surface Cross-Linking of Chitosan Hydrogel Beads for Enhanced Metal Adsorption Performance. Ind. Eng. Chem. Res. 2005, 44, 6692–6700. [Google Scholar] [CrossRef]
- Omari, H.; Dehbi, A.; Lammini, A.; Abdallaoui, A. Study of the Phosphorus Adsorption on the Sediments. J. Chem. 2019, 1–10. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, H.; Wu, K.; Wang, F.; Zhao, X.; Liao, Q. Understanding the Effect of Particle Size of Waste Concrete Powder on Phosphorus Removal Efficiency. Constr. Build. Mater. 2020, 236, 117526. [Google Scholar] [CrossRef]
- Li, X.; Weihu, Y.; Zou, Q.; Zuo, Y. Investigation on Microstructure, Composition, and Cytocompatibility of Natural Pumice for Potential Biomedical Application. Tissue Eng.Part. C Methods 2010, 16, 427–434. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Mohammadi, H.; Sharafi, K.; Asadi, A. Fluoride and Nitrate Adsorption from Water by Fe(III)-Doped Scoria: Optimizing Using Response Surface Modeling, Kinetic and Equilibrium Study. Water Sci. Technol. Water Supply 2018, 18, 1117–1132. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Z.; Lu, S.; Wu, D.; Zhang, Z.; Kong, H. Removal and Recovery of Phosphate from Water by Lanthanum Hydroxide Materials. Chem. Eng. J. 2014, 254, 163–170. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, H.; Pan, G. Flocculation of Cyanobacterial Cells Using Coal Fly Ash Modified Chitosan. Water Res. 2016, 97, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Langford, J.I.; Wilson, A.J.C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, X.; Luo, W.; Sun, J.; Xu, Q.; Chen, F.; Zhao, J.; Wang, S.; Yao, F.; Wang, D.; et al. Effectiveness and Mechanisms of Phosphate Adsorption on Iron-Modified Biochars Derived from Waste Activated Sludge; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 247, ISBN 8673188822829. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Zain, S.M.; Rashid, A.K.; Rafique, R.F.; Khalid, K. Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II) Ions from Wastewater by Using Mangostana Garcinia Peel-Based Granular-Activated Carbon. J. Chem. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Pham, T.Q.; Li, F.M.; Nguyen, T.V.; Bui, X.T. Adsorption of Phosphate from Aqueous Solutions and Sewage Using Zirconium Loaded Okara (ZLO): Fixed-Bed Column Study. Sci. Total Environ. 2015, 523, 40–49. [Google Scholar] [CrossRef]
- Chittoo, B.S.; Sutherland, C. Column Breakthrough Studies for the Removal and Recovery of Phosphate by Lime-Iron Sludge: Modeling and Optimization Using Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System. Chin. J. Chem. Eng. 2020, 28, 1847–1859. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, B.; Wester, A.E.; Chen, J.; He, F.; Chen, H.; Gao, B. Reclaiming Phosphorus from Secondary Treated Municipal Wastewater with Engineered Biochar. Chem. Eng. J. 2019, 362, 460–468. [Google Scholar] [CrossRef]
- Babu, B.V.; Gupta, S. Modeling and Simulation of Fixed Bed Adsorption Column: Effect of Velocity Variation. i-Manag. J. Future Eng. Technol. 2005, 1, 60–66. [Google Scholar] [CrossRef]
- Bohart, G.S.; Adams, E.Q. Some Aspects of the Behavior of Charcoal with Respect to Chlorine. J. Chem. Soc. 1920, 42, 523–544. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.C. Hetrogeneous Ion Exchange in Flowing System. J. Am. Chem. Soc. 1944, 66, 1664–1666. [Google Scholar] [CrossRef]
Co (mg/L) | Hb (cm) | Q (mL/min) | Vi (mL) | tb (min) | te (min) | EBCT (min) | MTZ (cm) | qtotal (mg) | qe (mg/kg) | Ve (mL) |
---|---|---|---|---|---|---|---|---|---|---|
10 | 8 | 1 | 348.39 | 348.39 | 381.37 | 607.79 | 5.78 | 5.72 | 190.70 | 381.37 |
10 | 8 | 2 | 374.06 | 187.03 | 313.39 | 303.89 | 6.56 | 6.27 | 208.90 | 626.78 |
10 | 5 | 1 | 190.68 | 190.68 | 273.21 | 257.33 | 3.96 | 4.10 | 163.90 | 273.21 |
10 | 6 | 1 | 235.73 | 235.73 | 297 | 357.81 | 4.59 | 4.46 | 178.20 | 297 |
10 | 8 | 1 | 348.39 | 348.39 | 381.37 | 607.79 | 5.78 | 5.72 | 190.70 | 381.37 |
10 | 8 | 1 | 348.39 | 348.39 | 381.37 | 607.79 | 5.78 | 5.72 | 190.70 | 381.37 |
25 | 8 | 1 | 144.45 | 144.45 | 291.92 | 607.79 | 6.96 | 7.30 | 243.20 | 291.79 |
Exp. Parameters | Thomas | Adams–Bohart | Yoon–Nelson | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Co (mg/L) | Hb (cm) | Q (mL/min) | KTh × 102 (mL/min.mg) | qTh (mg/g) | R2 | KAB × 103 (L/mg min) | No × 103 (mg/L) | R2 | KYN (min−1) | τ(min) | R2 | |
Q (mL/min) | 10 | 8 | 1 | 2.830 | 0.215 | 0.87 | 0.188 | 1.690 | 0.98 | 2.831 | 6.453 | 0.90 |
10 | 8 | 2 | 2.610 | 0.203 | 0.92 | 0.172 | 3.217 | 0.92 | 2.613 | 6.079 | 0.92 | |
Hb (cm) | 10 | 5 | 1 | 1.670 | 0.328 | 0.84 | 0.151 | 2.602 | 0.96 | 2.608 | 5.985 | 0.92 |
10 | 6 | 1 | 2.430 | 0.253 | 0.93 | 0.155 | 2.188 | 0.98 | 2.430 | 6.174 | 0.93 | |
10 | 8 | 1 | 2.830 | 0.215 | 0.87 | 0.188 | 1.690 | 0.98 | 2.831 | 6.453 | 0.90 | |
Co (mg/L) | 10 | 8 | 1 | 2.830 | 0.215 | 0.87 | 0.188 | 1.690 | 0.98 | 2.831 | 6.453 | 0.90 |
25 | 8 | 1 | 2.120 | 0.197 | 0.94 | 0.143 | 1.578 | 0.92 | 2.121 | 5.908 | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal. Materials 2021, 14, 5466. https://doi.org/10.3390/ma14195466
Mekonnen DT, Alemayehu E, Lennartz B. Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal. Materials. 2021; 14(19):5466. https://doi.org/10.3390/ma14195466
Chicago/Turabian StyleMekonnen, Dereje Tadesse, Esayas Alemayehu, and Bernd Lennartz. 2021. "Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal" Materials 14, no. 19: 5466. https://doi.org/10.3390/ma14195466
APA StyleMekonnen, D. T., Alemayehu, E., & Lennartz, B. (2021). Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal. Materials, 14(19), 5466. https://doi.org/10.3390/ma14195466